
11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 1/67



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 2/67

Open Geospatial Consortium

Submission Date: 2017-01-17

Approval Date:   2017-03-24

Publication Date:   2017-06-15

External identifier of this OGC® document: http://www.opengis.net/doc/BP/mf-json/1.0

Internal reference number of this OGC® document:    OGC 16-140r1

Version: 1.0

Category: OGC® Best Practice

Editor:   Kyoung-Sook KIM, Hirotaka OGAWA

OGC Moving Features Encoding Extension - JSON

Copyright notice

Copyright © 2017 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

This document defines an OGC Best Practice on a particular technology or approach related to an
OGC standard. This document is not an OGC Standard and may not be referred to as an OGC
Standard. This document is subject to change without notice. However, this document is an
official position of the OGC membership on this particular technology topic.

Document type:    OGC® Best Practice

Document subtype:    Not applicable

Document stage:    Approved for public
release

Document language:  English

http://www.opengis.net/doc/BP/mf-json/1.0
http://www.opengeospatial.org/legal/


11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 3/67

 License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms

set forth below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to

deal in the Intellectual Property without restriction (except as set forth below), including without limitation the rights

to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and

to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices on the

intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees

to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the

above copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or

adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT

MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED

IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL

MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE

UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE

USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL

PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,

INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED

INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE

OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE,

COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property

together with all copies in any form. The license will also terminate if you fail to comply with any term or condition

of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the

termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of

notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,

infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third

party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or

liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be

destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the

Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this

Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 4/67

shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks or

other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement is

governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United

Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any

provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to

make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No

decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 5/67

Contents
1. Scope
2. Conformance
3. References

4. Terms and de�nitions
4.1. API
4.2. client

4.3. dynamic attributes
4.4. feature
4.5. foliation

4.6. geometric object
4.7. geometric primitive
4.8. interface

4.9. leaf
4.10. moving feature
4.11. one parameter set of geometries

4.12. period
4.13. prism
4.14. request

4.15. resource
4.16. response
4.17. server
4.18. service

4.19. temporal geometry
4.20. trajectory

5. Conventions

5.1. JSON notation
5.2. UML notation
5.3. Abbreviated terms

6. JSON Encoding
6.1. Overview
6.2. Moving Features

6.3. Temporal Geometries
6.3.1. Simple Temporal Geometries
6.3.2. Collection of Temporal Geometries

6.4. Temporal Properties
6.5. Spatiotemporal Bounding Box
6.6. Application Domain Variables (Foreign Members)

6.7. Discussions
7. RESTful API



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 6/67

7.1. General Information
7.1.1. Verb

7.1.2. URI
7.1.3. Version
7.1.4. Status

7.1.5. Header
7.1.6. Body

7.2. Resources

7.2.1. Resource Classes
7.2.2. Resource Path Patterns
7.2.3. Resource Path Examples

7.3. Access Interfaces
7.3.1. Query Option $select
7.3.2. Query Option $filter

7.3.3. Query Option $search
7.3.4. Addressing Entities: $ref , $value

Bibliography

Appendix A: Revision History



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 7/67

i. Abstract

This document proposes a JavaScript Object Notation (JSON) encoding representation of
movement of geographic features as an encoding extension of OGC Moving Features ([OGC 14-
083r2] and [OGC 14-084r2]). A moving feature, typically a vehicle and pedestrian, can be
expressed as a temporal geometry whose location continuously changes over time and contains
dynamic non-spatial attributes whose values vary with time. This Best Practice describes how to
share moving feature data based on JSON and GeoJSON (a JSON format for encoding geographic
data structures). In addition, this document provides an example of RESTful approaches as a
Feature Service Interface that has the potential for simplicity, scalability, and resilience with
respect to exchange of moving feature data across the Web.

ii. Keywords

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, moving features, encoding, JSON, REST

iii. Preface

This Best p\Practice document follows the abstract data model defined in ISO 19141:2008 [ISO
19141:2008] with the encoding method referring to the IETF GeoJSON Format [IETF RFC 7946].
OGC Moving Features Encoding standards XML Core [OGC 14 083r2] and Simple CSV [OGC 14
084r2] have focused on the movement of 0-dimensional geometric primitives (Points), called
trajectories. However, this document covers the movements of 0-dimensional Points, 1-
dimensional curve LineStrings, and 2-dimensional surface Polygons to support application
requirements such as disaster risk management, traffic information services, and geo-fencing
services.

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

iv. Submitting organizations

The following organization has submitted this Document to the Open GeoSpatial Consortium,
Inc.:



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 8/67

Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and
Technology

v. Submitters

All questions regarding this submission should be directed to the editor or the submitters:

Name Organization

Kyoung-Sook KIM Artificial Intelligence Research Center, National Institute of
Advanced Industrial Science and Technology

Hirotaka OGAWA Artificial Intelligence Research Center, National Institute of
Advanced Industrial Science and Technology

vi. Future Work

Among the topics for future development are the following items:

Testing RESTful API implementation;

Moving features in an indoor space; and

Representation of three-dimensional moving features.



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 9/67

1. Scope
This Best Practice provides a format for encoding moving features using JSON [IETF RFC7159]
and an example of interfaces for the RESTful service of moving features. The Moving Feature
JSON encoding defined in this document is an alternative to the OGC® Moving Features
Encodings XML [OGC 14 083r2] and Simple Comma Separated Values (CSV) [OGC 14 084r2]
standards. The data format of Moving Feature JSON is correspondingly designed to implement
the abstract model of moving features as defined in ISO 19141:2008 [ISO 19141:2008] as shown in
the Figure 1 with the concepts of foliation, prism, trajectory, and leaf.

Figure 1. Conceptual Model of a Moving Feature: Foliation, Prism, Leaf, and Trajectory

In the illustration above, a 2D rectangle moves and rotates. Each representation of the rectangle
at a given time is a leaf. The path traced by each corner point of the rectangle (and by each of its
other points) is a trajectory. The set of points contained in all of the leaves, and in all of the
trajectories, forms a prism. The set of leaves also forms a foliation, meaning that there is a
complete and separate representation of the geometry of the feature for each specific time. The
prism of the moving feature can be viewed as a bundle of trajectories of points on the local
engineering representation of the feature’s geometry.

In general, Moving Feature JSON encoding applies to representations and formats of GeoJSON
[IETF RFC 7946]; however, new terms are added to specify dynamic attributes of moving
features:

Temporal geometric objects whose location changes over time: movements of 0-dimensional,
1-dimensional, 2-dimensional geometric primitives, and their collections; and

Dynamic non-spatial attributes whose value varies with time: changes of a quantity.

This document also describes interfaces for accessing moving features based on the data format:



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 10/67

RESTful APIs for handling moving feature data over HTTP: Create, Read, Update, and Delete
(CRUD) operations.

This Best Practice document has left many issues out of its scope. Design issues with complex
interpolation methods and service capabilities were not considered.



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 11/67

2. Conformance
Not applicable for this Best Practice document.



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 12/67

3. References
The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. For undated references, the latest edition of
the normative document referred to applies.

OGC: OGC 06-121r9 (http://www.opengeospatial.org/standards/common), OGC Web Services Common
Standard, version 2.0.0, 2010.

OGC: OGC 14-083r2 (http://www.opengeospatial.org/standards/movingfeatures), OGC Moving Features
Encoding Part I: XML Core, 2015.

OGC: OGC 14-084r2 (http://www.opengeospatial.org/standards/movingfeatures), OGC Moving Features
Encoding Extension: Simple Comma Separated Values (CSV), 2015.

OGC: OGC 16-120r3 (http://www.opengeospatial.org/standards/movingfeatures), OGC Moving Features
Access, 2017.

OGC: OGC 15-078r6 (http://www.opengeospatial.org/standards/sensorthings), OGC SensorThings API
Part 1: Sensing, 2016.

ISO: ISO/IEC Directives
(http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype), Part 2.
Rules for the structure and drafting of International Standards

ISO: ISO 8601:2004 (http://www.iso.org/iso/catalogue_detail?csnumber=40874), Data elements and
interchange formats - Information interchange - Representation of dates and time, 2004.

ISO: ISO 19101:2014 (http://www.iso.org/iso/catalogue_detail?csnumber=59164), Geographic
information — Reference model — Part 1: Fundamentals, 2014.

ISO: ISO 19103:2015 (http://www.iso.org/iso/catalogue_detail?csnumber=56734), Geographic
information — Conceptual schema language, 2015.

ISO: ISO 19107:2003 (http://www.iso.org/iso/catalogue_detail?csnumber=26012) Geographic
Information �- Spatial schema, 2003.

ISO: ISO 19119:2006
(http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59221), Geographic
information - Services, 2006.

ISO: ISO 19141:2008
(http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41445), Geographic
information - Schema for moving features, 2008.

IETF: IETF RFC 3986 (https://www.ietf.org/rfc/rfc3986.txt), Uniform Resource Identifier (URI):
Generic Syntax, 2005.

http://www.opengeospatial.org/standards/common
http://www.opengeospatial.org/standards/movingfeatures
http://www.opengeospatial.org/standards/movingfeatures
http://www.opengeospatial.org/standards/movingfeatures
http://www.opengeospatial.org/standards/sensorthings
http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=59164
http://www.iso.org/iso/catalogue_detail?csnumber=56734
http://www.iso.org/iso/catalogue_detail?csnumber=26012
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59221
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41445
https://www.ietf.org/rfc/rfc3986.txt


11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 13/67

IETF: IETF RFC 2616 (https://www.ietf.org/rfc/rfc2616.txt), Hypertext Transfer Protocol — HTTP/1.1,
1999.

IETF: IETF RFC 7159 (https://www.ietf.org/rfc/rfc7159.txt), The JavaScript Object Notation (JSON)
Data Interchange Format, 2014.

IETF: IETF RFC 7464 (https://www.ietf.org/rfc/rfc7464.txt), JavaScript Object Notation (JSON) Text
Sequences, 2015.

IETF: IETF RFC 7946 (https://www.ietf.org/rfc/rfc7946.txt), The GeoJSON Format, 2016.

OASIS: OData-Part1 (http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html), OData
Version 4.0. Part 1: Protocol Plus Errata 03. Edited by Michael Pizzo, Ralf Handl, and Martin
Zurmuehl. OASIS Standard incorporating Approved Errata 03, 2016.

Additionally the following informative documents are addressed:

OGC: OGC 15-052r1, OGC Testbed 11 REST Interface Engineering Report, 2016.

https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc7159.txt
https://www.ietf.org/rfc/rfc7464.txt
https://www.ietf.org/rfc/rfc7946.txt
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html


11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 14/67

4. Terms and definitions
This document uses the specification terms defined in Subclause 5.3 of [OGC 06-121r9], which is
based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of International
Standards. In particular:

SHALL is the verb form used to indicate a requirement to be strictly followed to conform to
this specification, from which no deviation is permitted

MAY �is the verb form used to indicate an action permissible within the limits of this
specification

For the purposes of this document, the following additional terms and definitions apply.

4.1. API
An interface that is defined in terms of a set of functions and procedures, and enables a program
to gain access to facilities within an application. (Definition from Dictionary of Computer Science
- Oxford Quick Reference, 2016)

4.2. client
software component that can invoke an operation from a server
[ OGC 06-121r9 ]

4.3. dynamic attributes
characteristic of a feature in which its value varies with time

4.4. feature
abstraction of real world phenomena
[ ISO 19101:2014 ]

4.5. foliation
one parameter set of geometries such that each point in the prism of the set is in one and only
one trajectory and in one and only one leaf
[ ISO 19141:2008 ]

4.6. geometric object
spatial object representing a geometric set
[ ISO 19107:2003 ]

4.7. geometric primitive



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 15/67

geometric object representing a single, connected, homogeneous element of space
[ ISO 19107:2003 ]

4.8. interface
named set of operations that characterize the behaviour of an entity
[ ISO 19119:2006 ]

4.9. leaf
<one parameter set of geometries> geometry at a particular value of the parameter
[ ISO 19141:2008 ]

4.10. moving feature
feature whose location changes over time
[ ISO 19141:2008 ]
NOTE    Its base representation uses a local origin and local coordinate vectors of a geometric
object at a given reference time.

4.11. one parameter set of geometries
function f from an interval t  [a, b] such that f(t) is a geometry and for each point P  f(a) there
is a one parameter set of points (called the trajectory of P) P(t):[a,b] → P(t) such that P(t)  f(t)
[ ISO 19141:2008 ]
EXAMPLE    A curve C with constructive parameter t is a one parameter set of points c(t).

4.12. period
one-dimensional geometric primitive representing extent in time
[ ISO 19141:2008 ]

4.13. prism
<one parameter set of geometries> set of points in the union of the geometries (or the union of
the trajectories) of a one parameter set of geometries
[ ISO 19141:2008 ]

4.14. request
invocation of an operation by a client
[ OGC 06-121r9 ]

4.15. resource
any addressable unit of information or service
[ IETF RFC 3986 ]

∈ ∈

∈



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 16/67

4.16. response
result of an operation, returned from a server to a client
[ OGC 06-121r9 ]

4.17. server
a particular instance of a service
[ OGC 06-121r9 ]

4.18. service
distinct part of the functionality that is provided by an entity through interfaces
[ ISO 19119:2006 ]

4.19. temporal geometry
one parameter set of geometries in which the parameter is time

4.20. trajectory
path of a moving point described by a one parameter set of points
[ ISO 19141:2008 ]



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 17/67

5. Conventions
This section provides details and examples for conventions used in the document.

All examples in this document illustrated by gray or orange boxes are informative only.

5.1. JSON notation
The notation of JSON in this document is based on the specification of [RFC 7159].

The ordering of the members of any JSON object must be considered irrelevant. Some examples
use a JavaScript single line comment (//) and an ellipsis (… ) as placeholder notation for a specific
JSON instance. Whitespace is used in the examples inside this document to help illustrate the data
structures, but is not required. Unquoted whitespace is not significant in JSON.

5.2. UML notation
Unified Modeling Language (UML) static structure diagrams appearing in this document are used
as described in Subclause 5.2 of OGC Web Services Common [OGC 06-121r9].

5.3. Abbreviated terms
The following symbols and abbreviated terms are used in this best practice paper:

API Application Program Interface

CRS Coordinate Reference Systems

CRUD Create, Read, Update, Delete

CSV Comma Separated Values

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

ISO International Organization for Standardization

JSON JavaScript Object Notation

OASIS Organization for the Advancement of Structured Information Standards

OGC Open Geospatial Consortium

REST Representational State Transfer



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 18/67

UML Unified Modeling Language

URI Uniform Resource Identifiers

URL Uniform Resource Locators

WKT Well Known Text

XML Extensible Markup Language

1D One Dimensional

2D Two Dimensional



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 19/67

6. JSON Encoding
This clause specifies the data format for encoding moving features by using JSON objects.

6.1. Overview
Moving Features JSON (MF-JSON) defines new fields by extending "foreign members" of GeoJSON
(https://www.ietf.org/rfc/rfc7946.txt) [IETF RFC 7946]. MF-JSON provides several types of JSON objects
to represent geographical movements, dynamic properties, and spatiotemporal extents of
moving features, based on the two reference systems of World Geodetic System 1984 (WGS84)
and Coordinated Universal Time (UTC).



In IETF GeoJSON format (https://www.ietf.org/rfc/rfc7946.txt), types are not extensible.
GeoJSON allows only the fixed types: FeatureCollection, Feature, Point,
LineString, MultiPoint, Polygon, MultiLineString, MultiPolygon, and
GeometryCollection. Despite compliant GeoJSON not permitting extension of
types, this document extends new types for representing moving features with
time-varying geometries and properties.

Figure 2 compares the difference of members between GeoJSON and MF-JSON.

Figure 2. JSON Objects in the Moving Features JSON format

Example 6.1:

https://www.ietf.org/rfc/rfc7946.txt
https://www.ietf.org/rfc/rfc7946.txt


11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 20/67

{ 
    "type": "MovingFeature",  //(REQUIRED) Moving Feature Type 
    "temporalGeometry": { //(REQUIRED) temporal geometric object, extended from 
'geometry' 
        "type": "MovingPoint", // a geometry type to represent a trajectory 
        "coordinates": [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0] ], 
        "datetimes": ["2011-07-14T22:01:01Z", "2011-07-14T23:01:01Z", "2011-07-
15T00:01:01Z", "2011-07-15T01:01:01Z"], 
        "interpolations": ["Linear"] // a pre-defined interpolation method between two 
consecutive instants in the "datetimes" field 
    }, 
    "temporalProperties": [  //(OPTIONAL) dynamic non-spatial attributes, extended from 
'properties' 
        { // a group of temporal properties that are measured at the same times 
            "datetimes": ["2011-07-14T22:01:01Z", "2011-07-14T23:01:01Z", "2011-07-
15T00:01:01Z"], 
            "length": { 
              "uom": "http://www.qudt.org/qudt/owl/1.0.0/quantity/Length", // a URI 
denoting a unit-of-measure 
              "values": [1.0, 2.4, 1.0], // the array of values for "length", with the 
same number of elements as "datetimes" 
              "interpolations": ["Stepwise"], 
              "description": "description1" //(OPTIONAL) 
            }, 
            "message":{ 
              "uom": "text", // a predefined unit for a string value 
              "values": ["A", "B", "C"], // the array of values for "message", with the 
same number of elements as "datetimes" 
              "interpolations": ["Discrete"], 
              "description": "description2" //(OPTIONAL) 
            } 
        }, 
        { 
            "datetimes" : ["2011-07-14T22:02:01Z", "2011-07-15T01:11:22Z"], 
            "discharge" : { 
              "uom" : "m^3/s", // a symbol from UCUM 
              "values" : [3.0, 4.0], 
              "interpolations": [ // two user-defined interpolations having two sub-time 
intervals 
                  { 
                      "coefficients": [1.0, 3.0, 4.1], // v = 1.0t^2 + 3.0t + 4.1 
                      "period": { 
                        "begin": "2011-07-14T22:02:01Z", 
                        "end" : "2011-07-14T23:11:14Z" 
                      } 
                  }, 
                  { 
                      "coefficients": [5.0, 8.2], // v = 5.0t + 8.2 
                      "period": { 
                        "begin": "2011-07-14T23:11:14Z", 
                        "end" : "2011-07-15T01:11:22Z" 
                      } 
                  } 
              ], 
              "description": "it has two user-defined interpolations" //(OPTIONAL) 
            } 
        } 

JAVASCRIPT



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 21/67

6.2. Moving Features
In the MF-JSON format, two moving feature types are added as follows:

MovingFeature: a JSON object to represent a moving feature instance, having two REQUIRED
members of "type"  and "temporalGeometry" , and three OPTIONAL members of
"temporalProperties" , "stBoundedBy" , and "properties"  depending on the application
requirements.

The value of the "type"  member SHALL be the string of "MovingFeature" .

The value of the "temporalGeometry"  member SHALL be a JSON object as described in
Temporal Geometries. An instance of "MovingFeature"  SHALL only one
"temporalGeometry"  member.

The value of the "temporalProperties"  member SHALL be a JSON array as described in
Temporal Properties.

The value of the "stBoundedBy"  member SHALL be a JSON object as described in
Spatiotemporal Bounding Box, representing the spatiotemporal bounding box of the
"temporalGeometry"  instance.

The value of the "properties"  member is an object (any JSON object or a JSON null
value).

    ], 
    "stBoundedBy": {  //(OPTIONAL) spatiotemporal bounding box to include the moving 
feature 
        "bbox": [100.0, 0.0, 101.0, 1.0], 
        "period": { 
            "begin": "2011-07-14T22:01:00Z", 
            "end" : "2011-07-15T21:14:00Z" 
        } 
    }, 
    "properties": {  //(OPTIONAL) static non-spatial attributes regardless of time: the 
same representation of GeoJSON 
        "name": "bus1", 
        "state":"test1" 
    }
}

{ 
    "type": "MovingFeature",    //(REQUIRED) 
    "temporalGeometry": {...},    //(REQUIRED) 
    "temporalProperties": [...],  //(OPTIONAL) 
    "stBoundedBy": {...},         //(OPTIONAL) 
    "properties": {...}           //(OPTIONAL)
}

JAVASCRIPT



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 22/67

MovingFeatureCollection: a JSON object to represent a collection of moving feature
instances, having two REQUIRED members of "type"  and "features"  and one OPTIONAL
member of "stBoundedBy" .

The value of the "type"  member SHALL be the string of "MovingFeatureCollection" .

The value of the "features"  member SHALL be a JSON array of moving feature instances
as described in Temporal Geometries.

The value of the "stBoundedBy"  member SHALL be a JSON object as described in
Spatiotemporal Bounding Box, representing the spatiotemporal bounding box to cover all
of the "temporalGeometry"  instances in the "features"  elements.

6.3. Temporal Geometries
The value of "temporalGeometry"  member of a moving feature SHALL be a JSON object where
the value of the "type"  member is one of the following strings: "MovingPoint" ,
"MovingLineString" , "MovingPolygon" , "MultiMovingPoint" , "MultiMovingLineString" ,
"MultiMovingPolygon" , and "MovingGeometryCollection" . A temporal geometry is
conceptualized as a prism of the set of points contained in all of the leaves (a foliation) and
trajectories, representing the geographical movement of a moving feature. The temporal
geometry is mathematically modeled as a mapping function from time to a geometric object:
temporalGeometry: timePosition → Geometry (Point (http://geojson.org/geojson-spec.html#point),
LineString (http://geojson.org/geojson-spec.html#linestring), Polygon
(http://geojson.org/geojson-spec.html#polygon), MultiPoint (http://geojson.org/geojson-spec.html#multipoint),
MultiLineString (http://geojson.org/geojson-spec.html#multilinestring), MultiPolygon
(http://geojson.org/geojson-spec.html#multipolygon#polygon), or GeometryCollection
(http://geojson.org/geojson-spec.html#geometry-collection)).

{ 
    "type": "MovingFeatureCollection",  //(REQUIRED) 
    "features": [                       //(REQUIRED) 
        { 
            "type": "MovingFeature", 
            "temporalGeometry": {...}, 
            "temporalProperties": [...], 
            ... 
        }, 
        { 
            "type": "MovingFeature", 
            "temporalGeometry": {...}, 
            "temporalProperties": [...], 
            ... 
        } 
    ], 
    "stBoundedBy": {...}                  //(OPTIONAL)
}

JAVASCRIPT

http://geojson.org/geojson-spec.html#point
http://geojson.org/geojson-spec.html#linestring
http://geojson.org/geojson-spec.html#polygon
http://geojson.org/geojson-spec.html#multipoint
http://geojson.org/geojson-spec.html#multilinestring
http://geojson.org/geojson-spec.html#multipolygon#polygon
http://geojson.org/geojson-spec.html#geometry-collection


11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 23/67

MovingPoint: A temporal geometry represents the trajectory of a time-parameterized 0-
dimensional geometric primitive (Point) representing a single geographic position at a time
position (instant) within its temporal domain. Intuitively, this type depicts a set of curves in a
spatiotemporal domain. A MovingPoint is used to express mf:AbstractTrajectory
(http://docs.opengeospatial.org/is/14-083r2/14-083r2.html#78) in the OGC Moving Features standard.
For example, the movement information of people, vehicles, or hurricanes can be shared by
instances of the "MovingPoint"  type.

MovingLineString: A temporal geometry represents the prism of a time-parameterized 1-
dimensional (1D) geometric primitive (LineString) whose leaf at a time position is 1-
dimensional linear object in a particular time period. Intuitively this type depicts a set of
surfaces in a spatiotemporal domain. For example, the movement information of weather
fronts or traffic congestion on roads can be shared by instances of the "MovingLineString"
type.

MovingPolygon: A temporal geometry represents the prism of a time-parameterized 2-
dimensional (2D) geometric primitive (Polygon) whose leaf at a time position is 2-dimensional
polygonal object in a particular time period. Intuitively this type depicts a set of polyhedrons
that are the convex hulls of two congruent polygons in a spatiotemporal domain. For example,
the changes of flooding areas or the movement information of air pollution can be shared by
instances of the "MovingPolygon"  type.

MultiMovingPoint: A temporal geometry represents a set of moving points.

MultiMovingLineString: A temporal geometry represents a set of moving linestrings.

MultiMovingPolygon: A temporal geometry represents a set of moving polygons.

MovingGeometryCollection: Represents a collection of temporal geometries that have time-
varing locations. Each element in the collection belongs to one of the above types.

This practice defines two encoding mthods for a temporal geometry instance: simple and
collection form.

6.3.1. Simple Temporal Geometries

The simple form of temporal geometry instances is a JSON object with four REQUIRED members:
"type" , "coordinates" , "datetimes" , and "interpolations" . The simple form represents
the movement of one geometric primitive that comprises non-decomposed objects, i.e., a moving
point, moving linestring, and moving polygon. If viewed in a 4-dimensional spatio-temporal
coordinate system, the temporal geometry is a single continuum. A moving point, linestring, and
polygon is a spatio-temporal curve, surface, and solid, respectively. Their JSON representation is
as follows.

http://docs.opengeospatial.org/is/14-083r2/14-083r2.html#78


11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 24/67

"type" : A case-sensitive string that is one of "MovingPoint" , "MovingLineString" , and
"MovingPolygon" .

"coordinates" : The object SHALL be a list of leaf geometric primitives (points, linestrings,
polygons) at times. The number of elements is same as the "datetimes"  ones with a
temporal order. There is an one-to-one correspondence between the elements of
"coordinates"  and "datetimes"  as a temporal sequence of pairs , where  is a leaf
geometry and  is its sampling time.

Types Formats of the "coordinates"  object Comments

MovingPoint [ [x1,y1(,z1)], [x2,y2(,z2)], …  ] a list of points
at each leaf,
increasing
time order

MovingLineString [ [[x11,y11(,z11)], [x12,y12(,z12)], … ],
[[x21,y21(,z21)], [x22,y22(,z22)], … ], …  ]

a list of
linestrings at
each leaf,
increasing
time order

MovingPolygon [ [[[ox11,oy11(,oz11)], [ox12,oy12(,oz12)], … ],
[[ix11,iy11(,iz11)],[ix12,iy12(,iz12)], … ],… ],

[[[ox21,oy21(,oz21)], [ox22,oy22(,oz22)], … ],
[[ix21,iy21(,iz21)],[ix22,iy22(,iz22)], … ], … ], …  ]

a list of
polygons at
each leaf,
increasing
time order



[IETF GeoJSON format (https://www.rfc-editor.org/info/rfc7946)] A position is
represented by an array of numbers, which must contain two or more elements.
The first two elements are longitude/easting (x) and latitude/northing (y),
precisely in that order and using decimal numbers. Altitude/elevation (z) MAY be
included as an optional third element.

{ 
    ..., 
    "temporalGeometry": { 
      "type": "MovingPoint | MovingLineString | MovingPolygon",  // (REQUIRED) vbar | as 
a means to select ONE type. 
      "coordinates": [...],   //(REQUIRED) 
      "datetimes" : [...],    //(REQUIRED) 
      "interpolations": [...] //(REQUIRED) 
    }, 
    ...
}

JAVASCRIPT

(g, t) g

t

https://www.rfc-editor.org/info/rfc7946


11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 25/67

"datetimes" : The object SHALL be a list of time instants encoded as a character string of
[ISO 8601:2004](http://www.iso.org/iso/home/standards/iso8601.htm) date-time formatter in
chronological order, which does not allow duplicates.

Types Formats the "datetimes"
object

Comments

DateTime
(http://www.w3.org/TR/xmlschema11-
2/#dateTime)

["yyyy-MM-dd’T’HH:mm:ss’Z'",
"yyyy-MM-dd’T’HH:mm:ss’Z'", … ]

a list of
monotonic
increasing
instants

"interpolations" : The object SHALL be a JSON array of interpolation methods.
Interpolation (http://mathworld.wolfram.com/Interpolation.html) is a method of finding new values
for any function using the given set of values. Here, the interpolation object approximates
geographic positions at non sampling time instants for constructing the trajectory or prism of
a moving feature in a spatiotemporal domain. The unknown position at a particular time can
be found using many interpolation methods. In this practice, there are two expressions for an
instance of interpolation methods: Predefined Interpolation Methods and Interpolation
Formulas.

[Predefined Interpolation Methods]

A predefined method SHALL be a case-sensitive string of one of "Discrete" , "Stepwise" ,
"Linear" , and "Spline" . The new position is differently derived by each method. For the
predefined method, there is the restriction of the same number positions of all leaf
geometries.

Types Descriptions Comments

Discrete There is no interpolation
position between two
successive positions.

http://www.iso.org/iso/home/standards/iso8601.htm
http://www.w3.org/TR/xmlschema11-2/#dateTime
http://mathworld.wolfram.com/Interpolation.html


11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 26/67

Types Descriptions Comments

Stepwise The interpolation position
between two successive
positions equals to the first
position.

Linear The new position is found
from the linear
interpolation formula with
the two successive positions.
*Default

Spline An interpolation position is
derived from a cubic spline
function on each interval
between data positions.


If a moving feature needs different predefined interpolation methods for several
sub-intervals of time during its lifespan, this practice recommends the use of
user-defined interpolation formulas corresponding to each sub-interval.

[Interpolation Formulas]

{ 
    "type": "MovingPoint", 
    "coordinates": [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0]], 
    "datetimes": ["2011-07-14T22:01:01Z", "2011-07-14T23:01:01Z", "2011-07-
15T00:01:01Z"], 
    "interpolations": ["Linear"] // an interpolation method during the period of 
datetimes
}

JAVASCRIPT



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 27/67

A temporal geometry MAY have a several interpolation formulas within its temporal domain. An
element of interpolation formulas SHALL be represented by two members of "coefficients"
and "period" . The new geographical position at a given time position is derived from a
"coefficients"  instance as a multidimensional array of polynomial interpolation formulas
of  coordinates during a particular time period. If a time position does not belong to any
time period of the elements of formula, there is no interpolation position at that time. The order
of arrays for the interpolation formula of a temporal position SHALL follow  (longitude), 
(latitude),  (altitude) order. The time periods between any two elements of formulas only allows
empty or 0-dimensional intersection. This practice converts the time position to a signed 64-bit
integer(long) value that represents milliseconds for computing a value of each axis of coordinates
at an arbitrary time position formatted by a character string of [ISO 8601:2004].

(x, y, z)

x y

z

[x(t) = + +. . . + ]an−1tn−1 an−2tn−2 a0t0

[y(t) = + +. . . + ]bn−1tn−1 bn−2tn−2 b0t0

[z(t) = + +. . . + ]cn−1tn−1 cn−2tn−2 c0t0

{ 
    "type": "MovingPoint", 
    "coordinates": ..., 
    "datetimes": ..., 
    "interpolations": [ 
     { 
         "coefficients": [[1.0, 3.0, 4.1], [2.0, 2.1, 3.0]], 
         // x = 1.0*t^2 + 3.0*t + 4.1 , y = 2.0*t^2 + 2.1*t + 3.0 
         "period": { 
             "begin": "2011-07-14T22:01:01Z", 
             "end" : "2011-07-14T23:01:01Z" 
         } 
     }, 
     { 
         "coefficients": [[4.0, 2.0], [1.0, 2.0]], 
         // x = 4.0*t + 2.0 , y = 1.0*t + 2.0 
         "period": { 
             "begin": "2011-07-14T23:01:01Z", 
             "end" : "2011-07-15T00:01:01Z" 
         } 
     } 
   ]
}

JAVASCRIPT



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 28/67

6.3.2. Collection of Temporal Geometries

The collection form of temporal geometry instances is a JSON object with two REQUIRED fields:
"type"  and "members" .

"type" : A case-sensitive string that is one of "MultiMovingPoint" ,
"MultiMovingLineString" , "MultiMovingPolygon" , and "MovingGeometryCollection" .

{ 
    "type": "MovingLineString", 
    "coordinates": ..., 
    "datetimes": ..., 
    "interpolations": [ 
     { 
         "coefficients": [[[1.0, 3.0, 4.1], [2.0, 2.1, 3.0]], [[2.0, 1.0, 1.2], [1.0, 
0.1, 2.0]]], 
         // x1 = 1.0*t^2 + 3.0*t + 4.1 , y1 = 2.0*t^2 + 2.1*t + 3.0 
         // x2 = 2.0*t^2 + 1.0*t + 1.2 , y2 = 1.0*t^2 + 0.1*t + 2.0 
         "period": { 
             "begin": "2011-07-14T22:01:01Z", 
             "end" : "2011-07-14T23:01:01Z" 
         } 
     }, 
     { 
         "coefficients": [[[4.0, 2.0], [1.0, 2.0]], [[2.0, 3.0], [2.0, 1.0]]], 
         // x1 = 4.0*t + 2.0 , y1 = 1.0*t + 2.0 
         // x2 = 2.0*t + 3.0 , y2 = 2.0*t + 1.0 
         "period": { 
             "begin": "2011-07-14T23:01:01Z", 
             "end" : "2011-07-15T00:01:01Z" 
          } 
     } 
   ]
}

JAVASCRIPT

{ 
    ... 
    "temporalGeometry": { 
      "type": "MultiMovingPoint | MultiMovingLineString | MultiMovingPolygon | 
MovingGeometryCollection", 
      "members": [ 
         { 
            // Simple temporal geometry instance 
            "type": "MovingPoint | MovingLineString | MovingPolygon", 
            "coordinates": [...],  // COORDINATES expression 
            "datetimes" : [...],   // DATETIMES expression 
            "interpolations": [...]   // INTERPOLATIONS expression 
         } 
      ] 
    }, 
    ...
}

JAVASCRIPT



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 29/67

"members" : The object is encoded as a JSON array of instances of temporal geometry where
each element is encoded in simple form.

MultiMovingPoint: The elements of the "members"  object SHALL be instances of type
"MovingPoint" . The leaf geometry at a time position is an instance of type "MultiPoint",
which is the union of each leaf of moving point members at the same time.

MultiMovingLineString: The elements of the "members"  object SHALL be instances of
type "MovingLineString" . The leaf geometry at a time position is an instance of type
"MultiLineString", which is the union of each leaf of moving linestring members at the
same time.

MultiMovingPolygon: The element of the "members"  object SHALL be instances of type
"MovingPolygon" . The leaf geometry at a time position is an instance of type
"MultiPolygon", which is the union of each leaf of moving polygon members at the same
time.

MovingGeometryCollection: Each element of the "members"  object can be an instance of
different moving types. The leaf geometry at a time position is an instance of type
"GeometryCollection" , which is the union of each leaf of any temporal geometries at the
same time.

6.4. Temporal Properties
A moving feature can have more than zero time-varying properties, such as the velocity of
vehicles or the wind speed of hurricanes. A temporal property represents a dynamic measure
that the result of ascertaining the value of a characteristic of a moving feature that changes over
time and/or location. Even though the value of temporal property depends on the spatiotemporal
location, this document only considers the temporal dependencies of their changes of value.


If a property has a static value, it is represented with the "properties" member as
same as GeoJSON.



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 30/67

The temporalProperties  is a JSON array of collections of temporal properties whose results are
ascertained at the same times. A collection of temporal properties SHALL have one "datetimes"
member and more than one property member whose name is defined by an application.
However, the value of the property member SHALL be a JSON object that has the following fields:

"uom" : A unit of measure is a quantity adopted as a standard of measurement [ISO
19103:2015]. The unit of a temporal property is represented as a URI denoting a unit-of-
measure defined in a web resource or a predefined strings. This practice defines the following
unit strings.

Unit strings Descriptions

print symbols From the Unified Code for Units of Measure (UCUM)[1]

null The "values" member contains counting measures.

text The "values" member contains any strings.

image The "values" member contains Base64 strings converted from images.

{ 
    ..., 
    "temporalProperties": [ 
      { // a collection of temporal properties which are measured at the same times 
        "datetimes": [...],   //(REQUIRED) JSON Array of time instances in order, which 
does not allow duplicates. 
        "_property0_": {      // _property0_ whose name is defined by an application 
          "uom": ...,             //(REQUIRED) a predefined string or URI 
          "values": [...],        //(REQUIRED) a JSON Array of values 
          "interpolations": [...],//(REQUIRED) a JSON Array of interpolation methods 
          "description": "any string"   //(OPTIONAL) 
        }, 
        "_property1_": {      // _property1_ whose name is defined by an application 
          "uom": ...,             //(REQUIRED) a predefined string or URI 
          "values": [...],        //(REQUIRED) a JSON Array of values 
          "interpolations": [...],//(REQUIRED) a JSON Array of interpolation methods 
          "description": "any string"   //(OPTIONAL) a JSON string 
        }, 
        ... 
      }, 
      { // another collection of dynamic properties which are measured at the same times 
        "datetimes": [...], 
        "_property2_": {...}, 
        "_property3_": {...} 
      } 
    ], 
    ...
}

JAVASCRIPT



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 31/67

"values" : Each element of values is a string, number, null, or one of the literals: true and
false. The number of elements is the same as the "datetimes" ones. There is an one-to-one
correspondence between the elements of "values"  of a property object and "datetimes"  as
a temporal sequence of pairs , where  is a value of measurement and  is its sampling
time.


If the values of a temporal property are measured at different times of
"datetimes" , each SHALL be represented as a new element in the JSON array.

"interpolations" : The temporal property also needs to define an interpolation method like
the temporal geometry. The object SHALL be a JSON array of interpolation methods whose
instance is a pre-defined interpolation methods of "Discrete" , "Stepwise" , "Linear"
(default), and "Spline" , or an interpolation formula used for polynomial interpolation in
time.

(v, t) v t



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 32/67

{ 
  ..., 
  "temporalProperties" : [ 
    { 
      "datetimes" : [ "2017-03-13T01:00:00Z", "2017-03-13T02:00:00Z", "2017-03-
13T03:00:00Z", "2017-03-13T04:00:00Z", "2017-03-13T05:00:00Z", "2017-03-13T06:00:00Z", 
"2017-03-13T07:00:00Z", "2017-03-13T08:00:00Z", "2017-03-13T09:00:00Z", "2017-03-
13T10:00:00Z", "2017-03-13T11:00:00Z", "2017-03-13T12:00:00Z", "2017-03-13T13:00:00Z", 
"2017-03-13T14:00:00Z", "2017-03-13T15:00:00Z", "2017-03-13T16:00:00Z", "2017-03-
13T17:00:00Z", "2017-03-13T18:00:00Z", "2017-03-13T19:00:00Z", "2017-03-13T20:00:00Z", 
"2017-03-13T21:00:00Z", "2017-03-13T22:00:00Z", "2017-03-13T23:00:00Z", "2017-03-
13T24:00:00Z" ], 
      "NO2" : { 
        "uom" : "ppm", 
        "values" : [ 0.018, 0.013, 0.013, 0.014, 0.021, 0.034, 0.036, 0.047, 0.059, 
0.052, 0.042, 0.031, 0.024, 0.02, 0.023, 0.022, 0.027, 0.025, 0.029, 0.03, 0.024, 0.02, 
0.018, 0.016 ], 
        "interpolations" : [ "Stepwise" ] 
      }, 
      "NO" : { 
        "uom" : "ppm", 
        "values" : [ 0.001, 0.001, 0.001, 0.002, 0.002, 0.006, 0.012, 0.056, 0.085, 0.06, 
0.039, 0.024, 0.013, 0.01, 0.009, 0.009, 0.009, 0.007, 0.007, 0.006, 0.005, 0.004, 0.003, 
0.003 ], 
        "interpolations" : [ "Linear" ] 
      } 
    }, 
    { 
      "datetimes" : [ "2017-03-13T01:00:00Z", "2017-03-13T03:00:00Z", "2017-03-
13T04:00:00Z", "2017-03-13T05:00:00Z", "2017-03-13T06:00:00Z", "2017-03-13T07:00:00Z", 
"2017-03-13T08:00:00Z", "2017-03-13T09:00:00Z", "2017-03-13T10:00:00Z", "2017-03-
13T11:00:00Z", "2017-03-13T12:00:00Z", "2017-03-13T13:00:00Z", "2017-03-13T14:00:00Z", 
"2017-03-13T15:00:00Z", "2017-03-13T16:00:00Z", "2017-03-13T17:00:00Z", "2017-03-
13T18:00:00Z", "2017-03-13T19:00:00Z", "2017-03-13T20:00:00Z", "2017-03-13T21:00:00Z", 
"2017-03-13T22:00:00Z", "2017-03-13T23:00:00Z", "2017-03-13T24:00:00Z" ], 
      "CH4" : { 
        "uom" : "ppmC", 
        "values" : [ 1.97, 1.98, 1.97, 2.01, 2.19, 2.13, 2.06, 2.21, 2.14, 2.08, 2.04, 
1.99, 1.97, 1.96, 1.95, 1.95, 1.96, 1.96, 1.97, 1.96, 1.95, 1.95, 1.95 ], 
        "interpolations" : [ "Discrete" ] 
      }, 
      "THC" : { 
        "uom" : "ppmC", 
        "values" : [ 2.09, 2.05, 2.05, 2.09, 2.33, 2.26, 2.22, 2.45, 2.35, 2.25, 2.18, 
2.09, 2.04, 2.04, 2.03, 2.02, 2.03, 2.05, 2.08, 2.06, 2.03, 2.03, 2.03 ], 
        "interpolations" : [  // The function is an example, no sense of working 
          { 
            "coefficients": [1.0, 3.0, 4.1], // v = at^2 + bt + c 
            "period": { 
                 "begin": "2017-03-13T01:00:00Z", 
                 "end" : "2017-03-13T05:00:00Z" 
             } 
          }, 
          { 
            "coefficients": [5.0, 8.0], // v = at + b 
            "period": { 
                 "begin": "2017-03-13T05:00:00Z", 

JAVASCRIPT



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 33/67

"description" : A temporal property can have an optional member to describe a short
description.

6.5. Spatiotemporal Bounding Box
A moving feature may have a member named "stBoundedBy" , which indicates the boundary
containing moving features in a spatiotemporal domain. To represent information on the
coordinate range for moving features, this MF-JSON format follows GeoJSON’s "bbox"  field. The
value of the bbox member is a 2*n array where n is the number of dimensions. The temporal
boundary is a temporal period of "begin"  and "end"  expressed in ISO 8601:2004.

6.6. Application Domain Variables (Foreign Members)
MF-JSON uses annotations to represent foreign members which are not described in this
document and whose semantics are dependent on a domain or application specific requirement.
For this reason, MF-JSON defines foreign elements by extending the foreign member of GeoJSON.
For a name/value pair of a foreign member, the name always starts with the at sign (@), such as
"@id" , "@context" , and so on.

6.7. Discussions

                 "end" : "2017-03-13T24:00:00Z" 
            } 
          } 
      }, 
    } 
  ], 
  ...
}

{ 
    ..., 
    "stBoundedBy": { 
        "bbox": [-10.0, -10.0, 10.0, 10.0], 
        "period": { 
          "begin": "1994-11-05T13:15:30Z", 
          "end" : "1994-11-05T13:15:30Z" 
        } 
    }, 
    ...
}

JAVASCRIPT



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 34/67



Coordinate Reference System

The IETF GeoJSON format (https://www.ietf.org/rfc/rfc7946.txt) recommends a single
coordinate reference system based on WGS84[2]. In this version of MF-JSON,
CRSs are fixed to WGS84 for space and ISO 8601:2004 for time; however, the
coordinate reference systems need to be indicated in the case of an application
request. If the application requires an alternative CRS, the CRS of a GeoJSON
object can be represented with its "crs" field as described in GeoJSON(2008)[3].



Circular Temporal Geometry

Some applications, such as the predication of hurricanes, need to represent a
time-varying circular object. The IETF GeoJSON format
(https://www.ietf.org/rfc/rfc7946.txt) excludes the circular types such as Circle or
Ellipse. No type for "Circle" and "Ellipse" is defined in this version of MF-JSON.


Geometry Object

A moving feature may have a member named "geometry" , which may
represent its projection in coordinate space as points, curves, or surfaces. The
representation of Geometry objects is same as GeoJSON.

https://www.ietf.org/rfc/rfc7946.txt
https://www.ietf.org/rfc/rfc7946.txt


11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 35/67

7. RESTful API
This Clause provides a design example of a RESTful API as a form of service interface to handle
moving features on the Web with ease of development and access, as well as being robust and
scalable in server/client distributed environments. In general, Representational State Transfer
(REST) focuses on resources and how to access to these resources over Hypertext Transfer
Protocol (HTTP). A few use cases of RESTful approaches for OGC web service interfaces are
analyzed in the OGC Testbed 11 REST Interface Engineering Report [OGC 15-052r1]. OGC supports
the use of RESTful interfaces and JSON encodings and this practice refers to the OGC
SensorThings API [OGC 15-078r6] standard as a good example for RESTful principles.

7.1. General Information
Clients and servers exchange representations of resources via HTTP messages as shown in Figure
3. Clients send a request against the resources to the server in the form of a HTTP verb, Uniform
Resource Identifier (URI), protocol version, and request content (header and body). The server
replies with a response message consisting of the protocol version followed by a status code and
content.

Figure 3. Client/Server Communication based on RESTful API

7.1.1. Verb

Verb is an HTTP method: POST, GET, PUT/PATCH, and DELETE corresponding to create, read,
update, and delete (CRUD) operations, respectively. A client make a request with one of the
following methods to be applied to the resource.

POST Creates a new resource.

GET Retrieves a resource.

PUT Updates/Replaces an existing resource.

PATCH Updates/Modifies an existing resource.

DELETE Deletes a resource.

7.1.2. URI



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 36/67

A Uniform Resource Identifier (URI) provides a simple and extensible means for identifying a
resource as being a locator, a name, or both. The general rules of URIs are defined in [IETF RFC
3986]. The RESTful API to support moving feature data uses a Uniform Resource Locator (URL)
for location and access of resources via the HTTP protocol. The basic components of URLs can be
defined as follows:

URL = SERVICE_ROOT [ "/" RESOURCE_PATH [ "?" QUERY_OPTIONS ]]

SERVICE_ROOT: the identification of service endpoints for clients, usually formed as
"http:""//"host[":"port]["/"version] . The "http" scheme is used to locate network
resources via the HTTP protocol. The host is a domain name of a network host, or its IPv4
address as a set of four decimal digit groups separated by ".". The version is a API version.

RESOURCE_PATH: the representation of a particular resource. By attaching the resource path
after the service root URI, clients can address to different types of resources. (sub-clause 7.2).

QUERY_OPTIONS: clients can apply query options after the resource path to further process
the addressed resources, such as sorting by properties or filtering with criteria (sub-clause
7.3).

7.1.3. Version

The service implementation shall support a HTTP version. This document assumes the protocol
referred to as "HTTP/1.1" [IETF RFC 2616].

7.1.4. Status

The response message should contain a status code of the attempt to understand and satisfy the
request. Depending on the first digit of a 3-digit integer code, it is classified into five roles:

1xx Informational - Request received, continuing process

2xx Success - The action was successfully received, understood, and accepted

3xx Redirection - Further action must be taken in order to complete the
request

4xx Client Error - The request contains bad syntax or cannot be fulfilled

5xx Server Error - The server failed to fulfill an apparently valid request

Full list of status codes are defined in [IETF RFC 2616], Section 10. This document suggests usage
of the following specific codes:



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 37/67

200 OK : General success status code.

201 CREATED: Successful creation of resources for POST or PATCH.

204 NO CONTENT: Successful operation for DELETE or PUT. There is nothing in the response
body.

400 BAD REQUEST: General error of client request, such as a wrong parameter, missing data,
etc.

404 NOT FOUND: The requested resource is not found.

406 Not Acceptable: The media type given in the Content-Type header field is not
"application/geo+json"  or "application/geo+json-seq" .

500 Internal Service Error: Unexpected condition during the request operations in a server
side.

501 Not Implemented: The server does not support the functionality required to fulfill the
request.

7.1.5. Header

A general HTTP request/response message contains header fields consisting of a name, followed
by a colon (":") and the field value. Detailed information on HTTP header fields are described in
[IETF RFC 2616], Section 4.5 (General Header Fields), Section 5.3 (Request Header Fields), Section
6.2 (Response Header Fields), and Section 7.1 (Entity Header Fields). The RESTful API of moving
features in this document concerns only the Content-Type field, and the other fields are left to the
implementation of domain applications.

Content-Type: All request/response message SHALL contain the Content-Type field to indicate
the media type of the entity-body. The Content-Type field has one of media types of
"application/geo+json"  and "application/geo+json-seq"  to interpret Moving Features
JSON (MF-JSON) entities in the message body.

Transfer-Encoding: A web server serves content as a stream (dynamically-generated
content) with the Transfer-Encoding field set by "chunked" . The size of each chuck is sent
right before the chuck itself, the representation of content is recommended to use the JSON
Text Sequence format [IETF RFC 7464] for the streaming transfer. Content transfer is
terminated by a final chunk of length zero.


The Host request-header field specifies the Internet host and port number of the
resource being requested. If the service_root omits the request, the client needs to
include this field.

7.1.6. Body



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 38/67

The entity-body (if any) sent with an request or response is in the JSON format. If the entities
represent moving feature data, it is encoded by MF-JSON. More examples are given the next sub-
clause.

7.2. Resources
A request URI is constructed with a resource path for a corresponding resource item. Resources
are the fundamental elements of the RESTful API. This API is designed by the resource classes
and their relationships as shown in Figure 4.

Figure 4. REST Resource Classes of a Moving Feature Service

7.2.1. Resource Classes

MovingFeature Class: Is the root resource to enable the client to access other resources as its
properties. A MovingFeature resource is required to be implemented with the following
properties in a moving-feature service:

Name Description Data type Multiplicity
and use

Editable

@id It is the
unique and
system-
generated
identifier.
Clients
cannot edit
its value.

JSON Any (Null is not
allowed)

One
(mandatory)

NO



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 39/67

Name Description Data type Multiplicity
and use

Editable

temporalGeometry A
navigation
property to
address the
resource
containing a
temporal
geometry.

JSON
Object<TemporalGeometry>
(Null is not allowed)

One
(mandatory)

YES

temporalProperties A
navigation
property to
address the
resource
containing
temporal
properties.

JSON
Array<TemporalProperty>
or Null

Zero-to-one YES

properties A
navigation
property to
address the
resource
containing
static
properties
as name-
value pairs.

JSON Array<Property> or
Null

Zero-to-one YES


JSON Any = False / Null / True / Object / Array / Number / String
A resource instance whose type is specified, such as Geometry, DateTime,
TemporalGeometry, TemporalProperty, Property, and so on, is a JSON Object.

TemporalGeometry Class: The class for accessing the temporal geometry of moving features.
A TemporalGeometry resource is required to be implemented with the following properties in
a moving-feature service:



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 40/67

Name Description Data type Multiplicity
and use

EditableName Description Data type Multiplicity
and use

Editable

type Its value is one of
"MovingPoint",
"MovingLineString",
"MovingPolygon",
"MultiMovingPoint",
"MultiMovingLineString",
"MultiMovingPolygon", and
"MovingGeometryCollection".

JSON String One
(mandatory)

NO

coordinates A collection of geometries
represented by lists of
sampled positions.

JSON
Array<Geometry>
(or Null for
collection types)

Zero-to-one
(mandatory
for simple
types)

YES

datetimes A collection of datetimes
when the coordinates are
sampled.

JSON
Array<DateTime>
(or Null for
collection types)

Zero-to-one
(mandatory
for simple
types)

YES

members A navigation property to
address temporal-geometry
elements of the collection
types such as
"MultiMovingPoint",
"MultiMovingLineString",
"MultiMovingPolygon", and
"MovingGeometryCollection".

TemporalGeometry
(or Null for simple
types)

Zero-to-
many

NO

interpolations A navigation property to
address the interpolation
methods.

Interpolation (or
Null for collection
types)

Zero-to-
many
(mandatory
for simple
types)

YES

TemporalProperty Class: The class for accessing the temporal properties of moving features.
A TemporalProperty resource is optionally to be implemented in a moving-feature service.
The minimum properties for the class are defined by:



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 41/67

Name Description Data type Multiplicity
and use

EditableName Description Data type Multiplicity
and use

Editable

name A name of
dynamic
attribute of
feature.

JSON String One
(mandatory)

YES (but, no
duplication
within a
moving
feature.)

uom A symbol or URI
to address the
unit of
measurement.

JSON String or Null Zero-to-one YES

values A collection of
sampled values
to represent
dynamic
changes of
feature
attribute.

JSON
Array<Number/String>

One
(mandatory)

YES

datetimes A collection of
datetimes when
the values are
sampled.

JSON
Array<DateTime>

One
(mandatory)

YES

interpolations A navigation
property to
address the
interpolation
methods.

Interpolation One-to-
many
(mandatory)

YES

Interpolation Class: The class for accessing an interpolation method. An Interpolation
resource is required to be implemented with the following properties in a moving-feature
service:

Name Description Data type Multiplicity
and use

Editable



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 42/67

Name Description Data type Multiplicity
and use

Editable

@id It is the unique
and system-
generated
identifier.

JSON Any One
(mandatory)

NO

name A name of
interpolation.

JSON String One
(mandatory)

NO

formulas A collection of
formulas to
estimate arbitrary
values at time.

JSON Any Zero-to-one NO

For pre-defined methods such as "Discrete" , "Stepwise" , "Linear" , and "Spline" , the
client cannot edit the names of methods. This practice assumes that the name of a user-defined
interpolation formula is automatically assigned by the service when moving features are
inserted.

Property Class: The class for accessing the static properties of moving features. A Property
resource is optionally to be implemented in a moving-feature service. The minimum
properties for the class are defined by:

Name Description Data type Multiplicity
and use

Editable

name A name of feature
attribute.

JSON String One
(mandatory)

YES (but, no
duplication within
a moving feature.)

value A value of feature
attribute.

JSON Any One
(mandatory)

YES

FeatureLayer Class: The class for a collection of moving features to manage data in a distinct
(physical or logical) space; this is an optional resource and can be replaced by an Application-
dependent feature. When the service implements this class, the following properties may be
required:

Name Description Data type Multiplicity
and use

Editable



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 43/67

Name Description Data type Multiplicity
and use

Editable

name A property
indicates the
label of a
FeatureLayer
resource

JSON String One
(mandatory)

YES (but, no
duplication.)

description A property
describes a short
comment about
the layer

JSON String One
(mandatory)

YES

updateFrequency A property
provides the
connectivity of
movement
within a time
interval (second)

Integer One
(mandatory)

YES (but, the
previous data
are not
affected.)

features A navigation
property to
address each
moving feature

MovingFeature Zero-to-
many

YES


The moving-feature service needs to manage the connectivity of features'
movement by using the updateFrequency interval. If the updateFrequency
interval is 0, the server does not manage the connectivity of movements.

7.2.2. Resource Path Patterns

Each resource in the service has at least one URL. The recommended pattern of resource URL
paths to address a collection of MovingFeature entities, a MovingFeature entity, and their
properties may be formed as:

URL patterns without a FeatureLayer resource



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 44/67


@id is the identifier of moving feature; therefore, the server needs to return its
identifier when a client inserts a new feature or provides a way to access each
identifier.

If the server implements the FeatureLayer resource, it is recommend that the path pattern of
resource be formed as:

URL patterns with FeatureLayer resources

 $NAME is replaced by a value of property name .


For the root type of resources, a server should take one resource type of 
MovingFeatures or FeatureLayers. Both a MovingFeatures and FeatureLayers 
resource cannot exist at the same level.

7.2.3. Resource Path Examples

A client can make a request against the resources via URL using various HTTP methods: POST,
GET, PUT/PATCH, and DELETE.

Example 7.1: To insert a moving feature data into the service.

 - SERVICE_ROOT/MovingFeatures 
 - SERVICE_ROOT/MovingFeatures(@id) 
 - SERVICE_ROOT/MovingFeatures(@id)/temporalGeometry 
 - SERVICE_ROOT/MovingFeatures(@id)/temporalProperties 
 - SERVICE_ROOT/MovingFeatures(@id)/temporalProperties($NAME) 
 - SERVICE_ROOT/MovingFeatures(@id)/properties 
 - SERVICE_ROOT/MovingFeatures(@id)/properties($NAME)

 - SERVICE_ROOT/FeatureLayers/ 
 - SERVICE_ROOT/FeatureLayers($NAME)/features 
 - SERVICE_ROOT/FeatureLayers($NAME)/features(@id) 
 - SERVICE_ROOT/FeatureLayers($NAME)/features(@id)/temporalGeometry 
 - SERVICE_ROOT/FeatureLayers($NAME)/features(@id)/temporalProperties 
 - SERVICE_ROOT/FeatureLayers($NAME)/features(@id)/temporalProperties($NAME) 
 - SERVICE_ROOT/FeatureLayers($NAME)/features(@id)/properties 
 - SERVICE_ROOT/FeatureLayers($NAME)/features(@id)/properties($NAME)



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 45/67

Example 7.2: To insert a list of moving feature data into the service with the
"application/geo+json-seq" content type.

Example 7.3: To add new trajectory data into a stored moving feature.

>>> Request 
POST  SERVICE_ROOT/MovingFeatures   HTTP1.1 
Content-Type: application/geo+json 
{ 
    "type": "MovingFeature", 
    "temporalGeometry": { 
      "type": "MovingPoint", // a geometry type to represent a trajectory object 
      "coordinates": [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0] ], 
      "datetimes": ["2011-07-14T22:01:01Z", "2011-07-14T23:01:01Z", "2011-07-
15T00:01:01Z", "2011-07-15T01:01:01Z"], 
      "interpolations": ["Linear"] 
    }, 
    "temporalProperties": [  //(optional) 
      { 
        "datetimes" : ["2011-07-14T22:01:01Z", "2011-07-14T23:01:01Z", "2011-07-
15T00:01:01Z"], 
        "length": { 
          "uom": "http://www.qudt.org/qudt/owl/1.0.0/quantity/Length", // a URL denoting 
a unit-of-measure 
          "values": [1.0, 2.4, 1.0], 
          "interpolations": ["Stepwise"] 
        } 
      } 
    ] 
} 
 
<<< Response 
201 CREATED 
{ 
    “@id”: “mf0001", 
    “@created”: "2012-07-14T22:01:01" // Application-defined property 
}

>>> Request 
POST  SERVICE_ROOT/MovingFeatures   HTTP1.1 
Content-Type: application/geo+json-seq 
{ "type": "MovingFeature", "temporalGeometry": {...}, "temporalProperties": [...]} 
{ "type": "MovingFeature", "temporalGeometry": {...}, "temporalProperties": [...]} 
{ "type": "MovingFeature", "temporalGeometry": {...}, "temporalProperties": [...]} 
 
<<< Response 
201 CREATED 
{ 
    “@id”: [“mf0001", “mf0002", “mf0003"] 
    “@created”: "2012-07-14T22:01:01" // Application-defined property 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 46/67

Example 7.4: To get the list of all the temporal property information.

Example 7.5: To retrieve a temporal property information whose name is 'dose'.

Example 7.6: To modify the name of a property.

>>> Request 
POST  SERVICE_ROOT/MovingFeatures('mf0001')/temporalGeometry   HTTP1.1 
Content-Type: application/geo+json 
{ 
    "type": "MovingPoint", // a geometry type to represent a trajectory object 
    "coordinates": [ [100.0, 0.0], [101.0, 0.0]], 
    "datetimes": ["2011-07-16T02:01:01Z", "2011-07-16T06:01:01Z"], 
    "interpolation": ["Linear"] 
} 
 
<<< Response 
201 CREATED 
{ 
    “@modified”: "2012-07-14T22:01:01" // Application-defined property 
}

>>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')/temporalProperties   HTTP1.1 
 
<<< Response 
200 OK 
[ 
  { 
    "datetimes" : ["2011-07-14T22:01:01Z", "2011-07-14T23:01:01Z", "2011-07-
15T00:01:01Z"], 
    "length": { 
      "uom": "http://www.qudt.org/qudt/owl/1.0.0/quantity/Length", 
      "values": [1.0, 2.4, 1.0], 
      "interpolations": ["Stepwise"] 
    } 
  } 
]

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')/temporalProperties('dose')   HTTP1.1 
 
<<< Response 
200 OK 
{ 
    "datetimes" : ["2011-07-14T22:01:01Z", "2011-07-15T12:01:01Z"], 
    "dose": { 
      "uom": "http://www.qudt.org/qudt/owl/1.0.0/quantity/AbsorbedDose", 
      "values": [0.003, 0.003], 
      "interpolations": ["Discrete"] 
    } 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 47/67

7.3. Access Interfaces
The OGC Moving Features Access [OGC 16-120r3] document requires three types of operations for
accessing moving feature data: Type A, Type B, and Type C as follows:

Type A: Retrieval of feature attribute
For example, these operations retrieve positions, trajectories, and velocities of a moving
feature such as a car, a person, a vessel, an aircraft, and a hurricane.

Type B: Operations between one trajectory object and one or more geometry objects
An example of these operations is “intersection” between a geometry object like an
administrative boundary and a trajectory of a moving feature like a car, a person, a vessel, an
aircraft, and a hurricane.

Type C: Operations between two trajectory objects
An example of these operations is to calculate a distance of the nearest approach of a
trajectory to another trajectory. The case studies are distance between a criminal agent and a
police agent for predicting crime patterns or distance between soccer players for making
proper tactics.

OGC Moving Feature Access provides a guideline for implementing interfaces to support moving
feature data calculations in a database, data service, or an application using various
programming languages or protocols (e.g., SQL functions, Java APIs, and Web APIs). This sub-
clause exemplifies how to realize those operations using RESTful API based on a resource URL,
followed by the query option parts. The client is able to retrieve a resource representation using
a HTTP GET request.

"GET" SERVICE_ROOT "/" RESOURCE_PATH "?" QUERY_OPTIONS "HTTP/1.1"

This document basically follows the usage of query options ($filter, $count, $orderby, $skip, $top,
$select, and $search) as used in the OGC SensorThings API standard [OGC 15-078r6]. The OGC
SensorThings API provides a good example of adaptation in OData protocols [OData-Part1] and
extension of geospatial query functions. This practice employs the $select , $filter , and
$search  options in moving feature operations. In order to make a simple rule for the query
options, the abstract operations of moving features as identified in [OGC 16-120r3] are re-

>>> Request 
PUT  SERVICE_ROOT/MovingFeatures('mf0001')/properties#name='title'   HTTP1.1 
 
<<< Response 
204 NO CONTENT



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 48/67

categorized into three interfaces as shown in Figure 5: Harvest, Relation, and Analysis.
Interface GeoSpatial and Temporal are additionally defined to access derived properties from a
TemporalGeometry and TemporalProperty resource.



The Figure 5 omits the parameters and return types of Type A, B, and C
operations. The detailed specification of each operation in Type A, B, and C (gray
color boxes) is described by the OGC Moving Features Access standard. The other
interfaces (yellow color boxes) are not related to the OGC Moving Features Access
standard.

Figure 5. Interface Types of RESTful API

Harvest Interface: This interface mostly implements the Type A operations to retrieve
feature attributes. The practice uses geometryAtTime  and timeAtGeometry  to extend the
geometry types not only 0-dimensional geometry objects but also 1- and 2-dimensional
geometry objects instead of pointAtTime and timeAtPoint in the Moving Features Access
document. In addition, operation stBoundedBy  is added to return the boundary object
containing moving features in a spatiotemporal domain. This interface is realized with Query
Option $select .



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 49/67

Relation Interface: This interface implements the topological relationship operations in Type
B (between trajectory and geometry objects) and Type C (between two trajectory objects), such
as disjoint and intersects. The practice changes the name of distanceWithin to within  to
exclude the distance parameter. Moreover, new relations of enters , leaves , and passes
are defined to clarify its temporal order of topological changes of relation from intersects.
Figure 6 shows the examples of each relation. This interface is realized with Query Option
$filter .

Figure 6. Specialized Relations of Moving Features from intersects (  for time instant 
)

Analysis Interface: This interface implements the analysis operations in Type B (between
trajectory and geometry objects) and Type C (between two trajectory objects), such as
nearestApproach and difference. The operations return a new object as a computation result.
For example, operation "nearestApproach" with geometric object calculates the distance
between a trajectory and the geometry or between two trajectories, and returns a distance in
time. This practice additionally defines two more operations: buffer  and convoy . The
buffer  operation returns a temporal geometry (simple or collection) covering all points
within a given distance from a target temporal geometry (simple or collection). The convoy
operation returns the minimum bounding temporal geometry enclosing a group of moving
features such that these features are consecutively close to each other (the k-nearest
neighbors from a target) during a given time period. Figure 7 shows the result examples of
buffer  and convoy  operations. This interface is realized with Query Option $search .

Figure 7. Examples of Analysis Operations

< <ti tj tk

, ,ti tj tk



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 50/67

GeoSpatial Interface: This interface provides the function dimension  that returns the
maximum dimension of leaf geometry objects and boundary  that returns the closure of the
combinatorial geospatial boundary of all leaves (a foliation) for a temporal geometry
resource. This interface is realized with Query Option $select .

Temporal Interface: This interface provides the functions snapshot  and slice  that
returns a sub-object of a temporal geometry/property at a given time instant and time period,
respectively. The boundedBy  function returns the temporal range covering its prism. This
interface is realized with Query Option $select .

7.3.1. Query Option $select

The $select  query option requests the service to harvest the properties or return a value
derived from properties. The operations of Harvest, GeoSpatial, and Temporal are realized
with the $select  query option corresponding to a MovingFeature or FeatureLayer resource.

Example 7.7: geometryAtTime of a moving feature with ID.

Example 7.8: geometryAtTime of all moving features.

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')?$select=geometryAtTime(2008-02-04T00:00:00Z)  
HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "geometryAtTime" : { 
        "type" : "POINT", 
        "coordinates" : [ 116.35072, 39.96354 ] 
    } 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 51/67

Example 7.9: timeAtGeometry of a moving feature with ID.

Example 7.10: timeAtGeometry of all moving features.

>>> Request 
GET  SERVICE_ROOT/MovingFeatures?$select=geometryAtTime(2008-02-04T00:00:00Z)  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
[ 
    { 
        "@id" : "mf0001", 
        "geometryAtTime" : { 
            "type" : "POINT", 
            "coordinates" : [ 116.35072, 39.96354 ] 
        } 
    }, 
    { 
        "@id" : "mf0002", 
        "geometryAtTime" : { 
            "type" : "POINT", 
            "coordinates" : [ 116.01843751281389, 39.909385232047136 ] 
        } 
    } 
]

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')?$select=timeAtGeometry(POINT(116.4%2039.8))  
HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "timeAtGeometry" : [ "2008-02-07T13:00:37Z", "2008-02-07T13:00:51Z", "2008-02-
08T13:35:57Z", "2008-02-08T13:36:06Z", "2008-02-06T13:08:32Z", "2008-02-06T13:08:29Z", 
"2008-02-07T23:04:51Z", "2008-02-07T23:04:55Z", "2008-02-06T23:09:41Z", "2008-02-
06T23:09:56Z", "2008-02-04T00:36:14Z", "2008-02-04T00:36:23Z", "2008-02-05T13:17:28Z", 
"2008-02-05T13:17:39Z" ] 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 52/67

Example 7.11: velocity of the all moving feature.

Example 7.12: timeAtCummulativeDistance of a moving feature with ID.

Example 7.13: stBoundedBy of moving features.

>>> Request 
GET  SERVICE_ROOT/MovingFeatures?$select=timeAtGeometry(POINT(116.4%2039.8))  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
[ 
    { 
        "@id" : "mf0001", 
        "timeAtGeometry" : [ "2008-02-07T13:00:37Z", "2008-02-07T13:00:51Z", "2008-02-
08T13:35:57Z", "2008-02-08T13:36:06Z", "2008-02-06T13:08:32Z", "2008-02-06T13:08:29Z", 
"2008-02-07T23:04:51Z", "2008-02-07T23:04:55Z", "2008-02-06T23:09:41Z", "2008-02-
06T23:09:56Z", "2008-02-04T00:36:14Z", "2008-02-04T00:36:23Z", "2008-02-05T13:17:28Z", 
"2008-02-05T13:17:39Z" ] 
    }, 
    { 
        "@id": "mf0002", 
        "timeAtGeometry": ["2013-05-01T10:33:45Z"] 
    } 
]

>>> Request 
GET  SERVICE_ROOT/MovingFeatures?$select=velocity(2008-02-04T00:00:00Z)  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
[ 
    { 
        "@id" : "mf0001", 
        "velocity" : [ 0.0, 0.0 ] 
    }, 
    { 
        "@id" : "mf0002", 
        "velocity" : [ -5.42125853725347E-4, 1.0906301588750913E-4 ] 
    } 
]

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')?$select=timeAtCummulativeDistance(1,%22km%22)  
HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "timeAtCummulativeDistance" : "2008-02-02T22:35:04Z" 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 53/67

Example 7.14: subTrajectory of a moving feature with ID.

>>> Request 
GET  SERVICE_ROOT/MovingFeatures?$select=stBoundedBy()  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
[ 
  { 
    "@id" : "mf0001", 
    "stBoundedBy" : { 
      "bbox": [-10.0, -10.0, 10.0, 10.0], 
      "period": { 
        "begin": "1994-11-05T13:15:30Z", 
        "end" : "1994-11-05T13:15:30Z" 
      } 
    } 
  }, 
  { 
    "@id" : "mf0002", 
    "stBoundedBy" : { 
      "bbox": ..., 
      "period": ... 
    } 
  } 
]



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 54/67

The subTrajectory operation can also be realized by using the slice interface of temporal
geometry as follows:

Example 7.15: slice of the temporal geometry of the moving feature whose identifier is 'mf0001'.

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')?$select=subTrajectory(2008-02-
03T23:00:00Z,2008-02-03T23:05:00Z)  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "subTrajectory" : { 
        "type" : "MovingPoint", 
        "datetimes" : [ "2008-02-03T23:00:00Z", "2008-02-03T23:04:34Z", "2008-02-
03T23:03:49Z", "2008-02-03T23:03:04Z", "2008-02-03T23:02:19Z", "2008-02-03T23:01:29Z", 
"2008-02-03T23:00:44Z", "2008-02-03T23:00:04Z", "2008-02-03T23:04:39Z", "2008-02-
03T23:03:54Z", "2008-02-03T23:03:09Z", "2008-02-03T23:02:24Z", "2008-02-03T23:01:34Z", 
"2008-02-03T23:00:49Z", "2008-02-03T23:00:09Z", "2008-02-03T23:04:44Z", "2008-02-
03T23:03:59Z", "2008-02-03T23:03:14Z", "2008-02-03T23:02:29Z", "2008-02-03T23:01:39Z", 
"2008-02-03T23:00:54Z", "2008-02-03T23:00:14Z", "2008-02-03T23:04:49Z", "2008-02-
03T23:04:04Z", "2008-02-03T23:03:19Z", "2008-02-03T23:02:34Z", "2008-02-03T23:01:49Z", 
"2008-02-03T23:00:59Z", "2008-02-03T23:00:19Z", "2008-02-03T23:04:56Z", "2008-02-
03T23:04:09Z", "2008-02-03T23:03:24Z", "2008-02-03T23:02:39Z", "2008-02-03T23:01:54Z", 
"2008-02-03T23:01:04Z", "2008-02-03T23:00:24Z", "2008-02-03T23:04:14Z", "2008-02-
03T23:03:29Z", "2008-02-03T23:02:49Z", "2008-02-03T23:01:59Z", "2008-02-03T23:01:09Z", 
"2008-02-03T23:00:29Z", "2008-02-03T23:04:19Z", "2008-02-03T23:03:34Z", "2008-02-
03T23:02:54Z", "2008-02-03T23:02:04Z", "2008-02-03T23:01:19Z", "2008-02-03T23:00:34Z", 
"2008-02-03T23:04:29Z", "2008-02-03T23:03:44Z", "2008-02-03T23:02:59Z", "2008-02-
03T23:02:09Z", "2008-02-03T23:01:24Z", "2008-02-03T23:00:39Z", "2008-02-03T23:05:00Z" ], 
        "coordinates" : [ [ 116.35079, 39.96372 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35102, 39.96422 ], [ 116.35079, 39.96374 ], [ 
116.35079, 39.96373 ], [ 116.35079, 39.96372 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35102, 39.96422 ], [ 116.35079, 39.96374 ], [ 
116.35079, 39.96373 ], [ 116.35079, 39.96373 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35102, 39.96421 ], [ 116.35079, 39.96374 ], [ 
116.35079, 39.96373 ], [ 116.35079, 39.96373 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35076, 39.96383 ], [ 116.35107, 39.96425 ], [ 
116.35079, 39.96373 ], [ 116.35079, 39.96373 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35076, 39.96383 ], [ 116.35106, 39.96425 ], [ 
116.35079, 39.96373 ], [ 116.35079, 39.96373 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35105, 39.96424 ], [ 116.35079, 39.96373 ], [ 
116.35079, 39.96373 ], [ 116.35076, 39.96383 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35104, 39.96424 ], [ 116.35079, 39.96374 ], [ 116.35079, 39.96373 ], [ 
116.35076, 39.96383 ], [ 116.35076, 39.96383 ], [ 116.35076, 39.96383 ], [ 116.35104, 
39.96423 ], [ 116.35079, 39.96374 ], [ 116.35079, 39.96373 ], [ 116.35076, 39.96383 ] ], 
        "interpolations" : ["Linear"] 
    } 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 55/67

However, the slice operation is for only one MovingFeature resource. This practice restricts the
use of the GeoSpatial and Temporal interfaces to only TemporalGeometry or/and
TemporalProperty resource types. The following examples show the use cases of each operation.

Example 7.16: snapshot of the temporal property whose name is 'length' of the moving feature
whose identifier is 'mf0001'.

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')/temporalGeometry?$select=slice(2008-02-
03T23:00:00Z,2008-02-03T23:05:00Z)   HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "slice": { 
        "type" : "MovingPoint", 
        "datetimes" : [ "2008-02-03T23:00:00Z", "2008-02-03T23:04:34Z", "2008-02-
03T23:03:49Z", "2008-02-03T23:03:04Z", "2008-02-03T23:02:19Z", "2008-02-03T23:01:29Z", 
"2008-02-03T23:00:44Z", "2008-02-03T23:00:04Z", "2008-02-03T23:04:39Z", "2008-02-
03T23:03:54Z", "2008-02-03T23:03:09Z", "2008-02-03T23:02:24Z", "2008-02-03T23:01:34Z", 
"2008-02-03T23:00:49Z", "2008-02-03T23:00:09Z", "2008-02-03T23:04:44Z", "2008-02-
03T23:03:59Z", "2008-02-03T23:03:14Z", "2008-02-03T23:02:29Z", "2008-02-03T23:01:39Z", 
"2008-02-03T23:00:54Z", "2008-02-03T23:00:14Z", "2008-02-03T23:04:49Z", "2008-02-
03T23:04:04Z", "2008-02-03T23:03:19Z", "2008-02-03T23:02:34Z", "2008-02-03T23:01:49Z", 
"2008-02-03T23:00:59Z", "2008-02-03T23:00:19Z", "2008-02-03T23:04:56Z", "2008-02-
03T23:04:09Z", "2008-02-03T23:03:24Z", "2008-02-03T23:02:39Z", "2008-02-03T23:01:54Z", 
"2008-02-03T23:01:04Z", "2008-02-03T23:00:24Z", "2008-02-03T23:04:14Z", "2008-02-
03T23:03:29Z", "2008-02-03T23:02:49Z", "2008-02-03T23:01:59Z", "2008-02-03T23:01:09Z", 
"2008-02-03T23:00:29Z", "2008-02-03T23:04:19Z", "2008-02-03T23:03:34Z", "2008-02-
03T23:02:54Z", "2008-02-03T23:02:04Z", "2008-02-03T23:01:19Z", "2008-02-03T23:00:34Z", 
"2008-02-03T23:04:29Z", "2008-02-03T23:03:44Z", "2008-02-03T23:02:59Z", "2008-02-
03T23:02:09Z", "2008-02-03T23:01:24Z", "2008-02-03T23:00:39Z", "2008-02-03T23:05:00Z" ], 
        "coordinates" : [ [ 116.35079, 39.96372 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35102, 39.96422 ], [ 116.35079, 39.96374 ], [ 
116.35079, 39.96373 ], [ 116.35079, 39.96372 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35102, 39.96422 ], [ 116.35079, 39.96374 ], [ 
116.35079, 39.96373 ], [ 116.35079, 39.96373 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35102, 39.96421 ], [ 116.35079, 39.96374 ], [ 
116.35079, 39.96373 ], [ 116.35079, 39.96373 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35076, 39.96383 ], [ 116.35107, 39.96425 ], [ 
116.35079, 39.96373 ], [ 116.35079, 39.96373 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35076, 39.96383 ], [ 116.35106, 39.96425 ], [ 
116.35079, 39.96373 ], [ 116.35079, 39.96373 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35076, 39.96383 ], [ 116.35105, 39.96424 ], [ 116.35079, 39.96373 ], [ 
116.35079, 39.96373 ], [ 116.35076, 39.96383 ], [ 116.35076, 39.96383 ], [ 116.35076, 
39.96383 ], [ 116.35104, 39.96424 ], [ 116.35079, 39.96374 ], [ 116.35079, 39.96373 ], [ 
116.35076, 39.96383 ], [ 116.35076, 39.96383 ], [ 116.35076, 39.96383 ], [ 116.35104, 
39.96423 ], [ 116.35079, 39.96374 ], [ 116.35079, 39.96373 ], [ 116.35076, 39.96383 ] ], 
        "interpolations" : ["Linear"] 
    } 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 56/67

Example 7.17: boundedBy of the temporal geometry of the moving feature whose identifier is
'mf0001'.

Example 7.18: boundary of the temporal geometry of the moving feature whose identifier is
'mf0001'.

Example 7.19: to select a part of a temporal property of the moving feature whose identifier is
'mf0001'.

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')/temporalProperties('length')?
$select=snapshot(2013-05-01T10:33:41Z)   HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "snapshot": { 
      "datetimes": ["2013-05-01T10:33:41Z"], 
      "length": { 
        "uom": "http://www.qudt.org/qudt/owl/1.0.0/quantity/Length", 
        "values": [1.2], 
        "interpolations": ["Discrete"] 
    } 
}

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')/temporalGeometry?$select=boundedBy()   HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "boundedBy": { 
        "begin" : "2008-02-03T23:00:00Z", 
        "end" : "2008-02-03T23:05:00Z" 
    } 
}

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')/temporalGeometry?$select=boundary()   HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
  "boundary": { 
    "type": "LineString", 
    "coordinates": [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0] ] 
  } 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 57/67

7.3.2. Query Option $filter

The $filter  query option allows clients to filter a collection of moving features that are
addressed by a request URL. It can be applied to a specific moving feature or a collection of
moving features. The $filter  option is evaluated for each moving feature in the collection, and
returns the features where the expression of the Relation interface is true  in the response. For a
specific feature, it returns true  or false . The Relation interface is realized with the $filter
query option.

Example 7.20: The disjoint operation returns true or false corresponding to a moving feature.

Example 7.21: The intersects operation returns the identifiers of moving features whose trajectory
intersects with the parameter geometry object for a particular period of time in the collection.

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')/temporalProperties('length')?select=values gt 
10 HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
  "temporalProperties": [{ 
      "datetimes": ["2017-03-13T01:00:00Z","2017-03-13T21:00:00Z", "2017-03-
13T23:00:00Z"], 
      "length": { 
        "uom" : "m", 
        "values": [10, 15, 20], 
        "interpolations": "Linear" 
  }] 
}

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')?
$filter=disjoint(LINESTRING(1%202,3%204,5%206),2008-02-02T22:31:00Z,2008-02-02T22:40:00Z)  
HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "disjoint": true 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 58/67

Example 7.22: The distanceWithin operation returns the identifiers of moving features which are
located within 100km from the given position during the parameter time period.

 The operations of Type C between two trajectory objects provide spatiotemporal
relations (e.g., intersects). The current API tries to realize the Type C operation by
a temporary method until an expression is developed for the request URL, such
as the Well-Known Text (WKT) format for a geometry object.

(1) Create a temporal resource of FeatureLayer as follows:

(2) Insert a query object into the feature layer as follows:

>>> Request 
GET  SERVICE_ROOT/MovingFeatures?
$filter=intersects(POLYGON((30%2010%2C40%2040%2C20%2040%2C10%2020%2C30%2010)),2013-05-
01T10:33:50Z,2013-05-01T10:36:41Z)  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "intersects": [ "mf0001", "mf0003"] 
}

>>> Request 
GET  SERVICE_ROOT/MovingFeatures?$filter=distanceWithin(POINT(103%201.0),2013-05-
01T10:33:50Z,2013-05-01T10:36:41Z,100;km) HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "distanceWithin ": null 
}

>>> Request 
POST  SERVICE_ROOT/FeatureLayers   HTTP1.1 
Content-Type: application/geo+json 
{ 
    "name": "queryfeatures", 
    "description": "temporal feature layer for query parameters" 
    "updateFrequency": 0 
} 
 
<<< Response 
201 CREATED 
{ 
    “@id”: "queryfeatures", 
    “@created”: "2012-07-14T22:01:01" 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 59/67

(3) Search intersected moving features from the bus layer with the query feature.

7.3.3. Query Option $search

The $search  query option allows clients to analyze moving features or a specific moving
feature, and returns a new object as a computation result. The Analysis interface is realized with
the $search  query option.

Example 7.23: To search the nearest approach point with ID.

>>> Request 
POST  SERVICE_ROOT/FeatureLayers('queryfeatures')   HTTP1.1 
Content-Type: application/geo+json 
{ 
    "type": "MovingFeature", 
    "temporalGeometry": { 
    .... 
    } 
} 
<<< Response 
201 CREATED 
{ 
    “@id”: "mf9999999", 
    “@created”: "2012-07-14T23:01:01" 
}

>>> Request 
GET  SERVICE_ROOT/FeatureLayers('bus')/features?
$filter=intersects(@id)&@id='mf9999999'  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "intersects": [ "mf0001", "mf0003"] 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 60/67

Example 7.24: To search the nearest approach distance for all moving features.

Example 7.25: To compute each intersection object of the temporal geometry from a collection of
moving features with a parameter geometry object for a particular period of time.

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('mf0001')?
$search=nearestApproachPoint(LINESTRING(116.35%2039.8,116.36%2040),2008-02-
04T00:00:00Z,2008-02-04T00:10:00Z)  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
      "nearestApproachPoint" : { 
          "type" : "MovingPoint", 
          "datetimes" : [ "2008-02-04T00:06:14Z", "2008-02-04T00:06:19Z" ], 
          "coordinates" : [ [ 116.35089, 39.96329 ], [ 116.35814635910225, 
39.962927182044886 ] ], 
          "interpolations" : ["Linear"] 
      } 
}

>>> Request 
GET  SERVICE_ROOT/MovingFeatures?
$search=nearestApproach(LINESTRING(116.35%2039.8,116.36%2040),2008-02-04T00:00:00Z,2008-
02-04T00:10:00Z)  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
[ 
     { 
         "@id" : "mf0001", 
         "nearestApproach" : { 
            "datetimes" : [ "2008-02-04T00:06:14Z", "2008-02-04T00:06:19Z" ], 
            "distance" : { 
              "uom" : "m", 
              "values" : [ 7.265423889165578, 7.265423889165578 ], 
              "interpolations" : ["Linear"] 
            } 
         } 
     } 
 ]



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 61/67

 The $search  query option can be used for the full text search of
properties/temporalProperties of moving features with a set of keywords.
For example,

>>> Request 
GET  SERVICE_ROOT/MovingFeatures?
$search=intersection(POLYGON((30%2010%2C40%2040%2C20%2040%2C10%2020%2C30%2010)),2013-05-
01T10:33:50Z,2013-05-01T10:36:41Z)  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
[ 
    { 
        "@id": "mf001", 
        "intersection": { 
            "type": "MovingPoint, 
            "coordinates": [...], 
            "datetimes" : [...], 
            "interpolations": [...] 
        } 
    }, 
    { 
        "@id": "mf003", 
        "intersection": { 
            ... 
        } 
    } 
]

>>> Request 
GET  SERVICE_ROOT/MovingFeatures/properties?$search=bike  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
[ 
    { 
        "@id": "mf001", 
        "properties": { 
            "name": "bike", 
            "description": "fast bike" 
        } 
    } 
]



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 62/67

>>> Request 
GET  SERVICE_ROOT/MovingFeatures/properties('name')?$search=bike  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
[ 
    { 
        "@id": "mf001", 
        "name": "bike" 
    } 
]

>>> Request 
GET  SERVICE_ROOT/MovingFeatures/temporalProperties?$search=(mountain OR 
bike) AND NOT clothing  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
[ 
    { 
        "@id": "mf003", 
        "temporalProperties": [{ 
            "datetimes": ["2017-03-13T01:00:00Z","2017-03-13T21:00:00Z", 
"2017-03-13T23:00:00Z"], 
            "messages": { 
              "uom" : "text", 
              "values": ["mountain bike", "mountain", "bike"], 
              "interpolations": "Discrete" 
            }, 
            "annotations": { 
              "uom" : "text", 
              "values": ["a mountain bike", "a mountain", "a bike"], 
              "interpolations": "Discrete" 
            } 
        }] 
    } 
]



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 63/67

7.3.4. Addressing Entities: $ref , $value

This practice uses the symbolic resource $ref , located at the service root or a FeatureLayer
entity, to get the URL for addressing all entities. The symbolic resource $value  is allowed to
resolve to a single property value or to get a list of values of TemporalProperty and Property
elements of a MovingFeatures resource in text/plain form.

Example 7.26: To get the URLs of all MovingFeatures entities if the service does not have any
resource of FeatureLayer.

Example 7.27: To get the URLs of all FeatureLayer entities if the service manages resources of
FeatureLayer.

>>> Request 
GET  SERVICE_ROOT/MovingFeatures/temporalProperties('messages')?$search=
(mountain OR bike) AND NOT clothing  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
[ 
    { 
        "@id": "mf003", 
        "messages": { 
            "datetimes": ["2017-03-13T01:00:00Z","2017-03-13T21:00:00Z", 
"2017-03-13T23:00:00Z"], 
            "values": ["mountain bike", "mountain", "bike"] 
        } 
    } 
]

>>> Request 
GET  SERVICE_ROOT/$ref  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "url": ["MovingFeatures('m0001')", "MovingFeatures('m0002')"] 
}

>>> Request 
GET  SERVICE_ROOT/$ref  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "url": ["FeatureLayers('bus')", "FeatureLayers('typhoon')"] 
}



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 64/67

Example 7.28: To get the URLs of all MovingFeatures entities in a FeatureLayer entity.

Example 7.29: To get a list of names of FeatureLayer.

Example 7.30: To get a list of static properties' name.

Example 7.31: To get a value of a static properties.

Example 7.32: To get a list of temporal properties' name.

Example 7.33: To get a unit value of a temporal property

>>> Request 
GET  SERVICE_ROOT/FeatureLayers('typhoon')/$ref  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: application/geo+json 
{ 
    "url": ["features('m0001')", "features('m0002')"] 
}

>>> Request 
GET  SERVICE_ROOT/FeatureLayers/name/$value  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: text/plain 
bus, typhoon

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('m0001')/properties/name/$value  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: text/plain 
title, author

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('m0001')/properties('title')/$value  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: text/plain 
Test Title

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('m0001')/temporalProperties/name/$value  HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: text/plain 
length, dose, picture



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 65/67

>>> Request 
GET  SERVICE_ROOT/MovingFeatures('m0001')/temporalProperties('length')/uom/$value  
HTTP1.1 
 
<<< Response 
200 OK 
Content_Type: text/plain 
http://www.qudt.org/qudt/owl/1.0.0/quantity/Length



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 66/67

Bibliography
[1] Schadow, G. and McDonald, C. J.: Unified Code for Units of Measure (UCUM),
unitsofmeasure.org

[2] EPSG: EPSG Geodetic Parameter Dataset, www.epsg.org

[3] IETF: [RFC 7946] The GeoJSON Format, 2016



11/13/2019 OGC Moving Features Encoding Extension - JSON

docs.opengeospatial.org/bp/16-140r1/16-140r1.html 67/67

Appendix A: Revision History

Date Release Author Paragraph
modified

Description

2016-08-29 Kyoung-Sook KIM,
Hirotaka OGAWA

All Created

2016-09-27 Kyoung-Sook KIM RESTful APIs:
Resource types and
interfaces

Revised

2016-10-23 Kyoung-Sook KIM Interpolation
formulas, RESTful
APIs

Revised

2017-01-15 Kyoung-Sook KIM RESTful APIs-
Addressing Entities

Added

2017-03-15 Kyoung-Sook KIM Temporal Properties Revised

2017-06-12 Scott Simmons All prepare for
publication

Last updated 2017-06-28 10:21:35 EDT


