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Ocean ecosystems are in decline, yet we also have more ocean data, and more data portals, than ever before. To make effective decisions re-
garding ocean management, especially in the face of global environmental change, we need to make the best use possible of these data.
Yet many data are not shared, are hard to find, and cannot be effectively accessed. We identify three classes of challenges to data sharing
and use: uploading, aggregating, and navigating. While tremendous advances have occurred to improve ocean data operability and transpar-
ency, the effect has been largely incremental. We propose a suite of both technical and cultural solutions to overcome these challenges
including the use of natural language processing, automatic data translation, ledger-based data identifiers, digital community currencies,
data impact factors, and social networks as ways of breaking through these barriers. One way to harness these solutions could be a combina-
torial machine that embodies both technological and social networking solutions to aggregate ocean data and to allow researchers to
discover, navigate, and download data as well as to connect researchers and data users while providing an open-sourced backend for new
data tools.
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Introduction
Ocean conservation and management are failing to keep pace

with our rapidly changing planet (WWF, 2018). Many marine

mammals struggle to survive (IUCN, 2018), fish populations con-

tinue to decline, and coral reef ecosystems are dying (Hoegh-

Guldberg et al., 2018; FAO, 2018; WWF, 2018). Hypoxic zones

are expanding (WWF, 2018), and plastics have infiltrated nearly

every part of the marine environment (Jamieson et al., 2017;

Haward, 2018; Munthe and Jensen, 2018; WWF, 2018). Climate

change and local stressors are having profound impacts on ocean

social-ecological systems (Poloczanska et al., 2016; Hoegh-

Guldberg et al., 2018).

Evidence-based solutions are needed for these ocean-based

problems in order to better manage a rapidly changing ocean

(Sutherland et al., 2004; Fisher et al., 2014; Science 20, 2019). To

develop such solutions, we need to make best use of available
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data to understand the causes and patterns of change to the physi-

cal, ecological, and social components of ocean systems. We need

data to inform models of ocean change and its effects on ecosys-

tems and people, to evaluate scenarios associated with proposed

actions, and to know whether our policies are working (Sutherland

et al., 2004; WWF, 2018). The global and dynamic nature of the

ocean and its ecosystems means that data acquisition and sharing

must happen on an unprecedented scale and at faster rates. Rapid

global environmental change means we must constantly reassess

and update what we know. Time is of the essence.

Fortunately, we now have more data about more of the ocean

than ever before (Visbeck, 2018; WWF, 2018). Remote sensing

platforms continuously collect petabytes of earth observation

data (e.g. the Landsat and Sentinel programs). Thousands of sci-

entists are hard at work collecting data in the field (IOC-

UNESCO, 2017). Scores of online platforms are emerging where

scientists can share and access data (see Supplementary Materials

for a sample of ocean data portals).

Yet, we still need more data to effectively manage oceans.

While satellites, buoys, and other technical approaches have

helped chart and monitor the physical and chemical properties of

much of the ocean, as much as 90% of the seafloor remains

unmapped and unmonitored. Fifteen percent or less of the ocean

is as well mapped as the terrestrial surface of the planet (Sandwell

et al., 2003). Our lack of understanding and regular monitoring

of the biological and human dimensions of the ocean are likely

even more data poor. Many habitats, including the deep sea,

ocean trenches, ice-bound waters, methane seeps, and even coral

reefs remain poorly studied at the global scale. Geographic gaps

in biodiversity data are particularly acute for many parts of the

global ocean including coastal areas of the Indian Ocean, the

southern and eastern Mediterranean Sea, polar seas, and much of

the South American coastal ocean (Costello et al., 2010). The pro-

portion of undiscovered marine species is estimated to be as high

as 80% (Costello et al., 2010) with many invertebrate taxa being

particularly poorly documented and monitored (Costello et al.,

2010). Even organisms as large as whales and dolphins remain

consistently under-evaluated and monitored; 52% of all IUCN-

listed cetaceans are considered as data deficient (Parsons, 2016).

Data about many of these places and organisms exist, but hidden

in notebooks and laptops, and not available for the new analyses

that are needed for ocean management.

One factor limiting our evidence-base for ocean management is

that we use just a fraction of the potentially available data

(Figure 1). Many ocean data are never shared publicly (Costello,

2009; Kim and Stanton, 2016). Those data that are shared may be

difficult to find and integrate with other datasets. Online platforms

are often discipline-specific or application specific, creating barriers

to discovery and integration (Arzberger et al., 2004; Chavan and

Ingwersen, 2009; Costello, 2009; Kim and Zhang, 2015). Perhaps

most challenging, data are easily dissociated from the people who

helped create and curate them, rendering communication between

users and producers difficult (Ferguson et al., 2014).

Another factor limiting the evidence base that underpins ocean

management is that our science and analysis is often limited to

“good data,” i.e. high quality, in a format that meets some agreed

standard. But much information exists in the messy data that

may be of varying formats and quality, infrequently, if ever,

updated and hence easily corrupted, changed, or simply lost

(Costello, 2009). Some of these messy data are rigorously col-

lected by students, non-academic researchers, academic

researchers that do not publish their data regularly, government

scientists, and others but may not be perceived to be “good data”

owing to a lack of standardization, a reliance on technology of

unknown accuracy or other factors that may lead one to question

the rigour of the data. Other data may fall more in the realm of

citizen science or even big data that are collected passively from

non-scientific sources (e.g. InstagramTM, FlickerTM, and other

types of social media). While messy, these data may still contain

important information, especially where large gaps in “good

data” exist. We need to find new ways to harness these data.

Data are expensive to collect, manage, and archive (Arzberger

et al., 2004; Tenopir et al., 2011; Michener, 2015; Pisani et al., 2016;

Rockhold et al., 2016). A failure to get these data from producers

to users can lead to (i) lost opportunities to inform science, deci-

sion-making, and management (Vahedifard et al., 2019) and (ii)

result in costly replication of data collecting effort, both of which

represent “data waste.” There is much to be gained from finding

new ways of reducing data waste to help manage the world’s ocean.

A datashed framework for understanding data
sharing and use
Like the various streams in a watershed, data flow from producer

to user, often along a circuitous path, or data stream (Figure 2)

creating a “datashed” that connects producers to users. In some

cases, data never leave the instrument of collection, be it a hand-

written notebook, sensor, or a smartphone (Thessen et al., 2012;

Hampton et al., 2013; Ferguson et al., 2014). Data may be held

tightly by the researcher or company collecting them – to be con-

verted into analysis, publications (Huang et al., 2012), or even

profit. Many datasets exist in a highly fragmented state (Chavan

and Ingwersen, 2009; Reichman et al., 2011). Some data are

shared only locally, within a laboratory or a government agency,

sites at which pools of data are generated. Smaller data pools

may, over time, flow into larger data lakes, perhaps organized by

institution, discipline, or project. As the number of data pools

increases (Goodman et al., 2014; Michener, 2015), individual

data become more disconnected and harder to find.

The datashed that links producers to users is most effective for

decision-making if data flow smoothly and can be tracked from

producer to user, but numerous obstacles impede this flow

(Reichman et al., 2011; Fecher et al., 2015; Tenopir et al., 2015;

Mbuagbaw et al., 2017). Data dams, created by firewalls, paywalls,

or layers of menus, can trap data or otherwise render them undis-

coverable or inaccessible. Projects end and data stagnate (they

cease to be updated or maintained) becoming trapped in swamps.

Data may be delivered in a form that make them difficult to use

beyond their original intent. As datasheds become longer, the

ability of end users to communicate to producers and intermedi-

ary managers further upstream may decline. Even when one

datashed flows without impediment, disciplinary mountains may

separate datasheds (Kim and Zhang, 2015; Kim and Stanton,

2016), preventing the interdisciplinary integration of data that is

necessary to study the whole-system thinking required to model

ocean ecosystem change and to monitor the effectiveness of ocean

policies (Gill et al., 2017).

Barriers that need to be surmounted to promote
data sharing and use
To effectively manage the global ocean and its living resources we

need to remove data-dams, build links between datasheds, and
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find new and better ways to navigate the enormity of data, both

in scale and scope. To do this, we identify three classes of chal-

lenges to data sharing (Figure 3): uploading, aggregating, and

navigating (see Reichman et al., 2011 for another typology).

Uploading
Uploading data to the cloud has become the first step needed to

get data into a larger digital ecosystem where it can be shared. A

number of obstacles inhibit data sharing including:

Figure 1. Current and desired states of data availability and sharing. The relative sizes of the water flows correspond to the amount of data
we speculate falls within each data type.

Figure 2. The “datashed” concept, in which data is generated by producers and, through processes of uploading and sharing, can become
aggregated with other data “streams.” (1) Data never leaves the instrument of collection; (2) data that are held tightly by the producer; (3)
highly fragmented datasets; (4) local data sets that are shared only within the institutional body; (5) smaller data pools that may eventually
pool together as part of larger projects involving multiple groups; (6) data dams, created by firewalls, paywalls, or layers of menus; (7) ended
projects with their stagnated data; (8) data in unusable forms; (9) disassociation of data sets from their original producers; and (10)
disciplinary mountains that separate datasheds.

Disrupting data sharing 1417
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(1) authorship/ownership concerns (e.g. fear of being “scooped,”

pressure to publish, commercial proprietary interests, loss of

control, and the fear that the data will be changed or cri-

tiqued; Costello, 2009; Reichman et al., 2011; Baker, 2016);

(2) the time and effort required to find appropriate portals and

upload data (Arzberger et al., 2004; Tenopir et al., 2011;

Michener, 2015; Pisani et al., 2016; Rockhold et al., 2016;

Wilkinson et al., 2016; Park and Wolfram, 2017);

(3) completing often arduous metadata and data formatting

requirements (Kim and Stanton, 2016); and

(4) a lack of incentives to share data (Costello, 2009; Reichman

et al., 2011).

In some cases, data are not digital (e.g. data that are in log books

or published in hard copy) or the data owner does not know they

have data that might be useful to others (e.g. photographic data

on social media and photo sharing platforms) or even that they

could be data producers or citizen scientists (e.g. smartphone

owners in Indonesian coastal villages who could photograph fish

they eat or record changes in mangroves or seagrass beds).

Aggregating
Even when data are uploaded to the cloud, they often remain segre-

gated—by geography, by discipline (including non-marine disci-

plines), by quality, etc. (Kim and Stanton, 2016). The variety of

data formats, units (Silvello, 2018), collection methods, and meta-

data standards can make the integration of data difficult. Links be-

tween data producers and users can be easily lost, making it

difficult to inform users if there are changes or updates in the data,

or for users to communicate to producers about potential problems

with or improvements that could be made to the data. Better aggre-

gation does not necessarily require that data are all homogenized,

stored together, and treated as the same, but it does require a more

centralized portal to access decentralized and disparate data.

Navigating
Navigating data becomes increasingly difficult as the volume and

diversity of data grow. As new data and platforms are added

(Michener, 2015; Wilkinson et al., 2016; Park and Wolfram,

2017), it can be increasingly difficult to know what data are avail-

able (discoverability), to find the data you want (searchability),

and to know which data are the most current or most accurate

(Goodman et al., 2014). When data of varying quality (Costello,

2009) are pooled, it may become more difficult to manage these

quality differences transparently. The tools associated with each

data portal may only meet the needs of a small set of users.

Data users and scientists need a more streamlined way of

searching for and accessing data. Google’s new Data Search

ToolTM provides a single site for data searching, but does not pro-

vide access to the data sets. Without a better system for navigating

data (aggregated virtually or otherwise), the transaction costs of

searching and compiling the data required for highly interdisci-

plinary analysis over large geographic and temporal scales can be

very high. A lack of a data integration framework or system has

been blamed for the failure to respond to rapid-onset natural dis-

asters like the Camp Fires in California (Vahedifard et al., 2019).

Solutions
Both technical and cultural solutions exist (Table 1) that could

break down the barriers to data flow (Figure 3). The key is to

Figure 3. Three key barriers to data sharing and use include uploading, aggregating and navigating. Both technical and cultural solutions
exist that could break down these barriers, and could be implemented within the context of a combinatorial machine (shown as a wheel)
that itself provides a platform for discovery and access to data from many different tools and applications.
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combine technical and cultural approaches to create solutions

and to draw from other sectors to learn how to do so. Here we re-

view a short-list of potentially disruptive solutions that already

exist, either at limited scale in the ocean data world or at more

fully implemented scales in other fields.

Technical solutions
We define technical solutions as those that require limited or no

behavioural change for data producers or users. In our frame-

work, technical solutions solve existing problems by changing the

technical nature of data or data sharing. These solutions could be

even more powerful if combined with cultural solutions. Two

types of technical solutions could be transformational to data

sharing if applied at scale:

Ledger-based technologies can address issues of authorship,

authenticity, traceability, immutability, and transparency,

thus breaking down some barriers to sharing data. A ledger

is a way of uniquely identifying data, associating that data

with a particular author or owner, and possibly tracking it

from source to final use (collectively known as provenance;

Bell et al., 2017; Hoy, 2017). Such ledgers can be differenti-

ated by the degree to which they ensure trust, immutability,

and provenance. The simplest ledger is the digital object

identifier (DOI) already available for many types of data

(e.g. https://datadryad.org/pages/repository). DOIs provide

a minimum level of assurance regarding provenance—they

are associated with the original data, but datasets that are

transformed, or combined may have their own DOI, break-

ing the chain of provenance. Other types of ledgers, such as

blockchain, could provide more information, traceability

and security for data (Bell et al., 2017; Extance, 2017;

Bartling, 2018; Günther and Chirita, 2018; Pluto, 2018).

Blockchains could record changes to data, both updates of

original data and data transformation that occurs as part of

secondary and tertiary analyses. In addition, they could be

used to track data as it is combined into larger or more in-

terdisciplinary data sets (e.g. Blockchain for science;

Bartling, 2018). Permissioned blockchains could reflect the

level of review, including peer review and thus embody in-

formation on quality (Rossum, 2017; Günther and Chirita,

2018; Pluto, 2018) leading to more transparency and

accountability.

Automatic data translation and information extraction, such

as natural language processing (NLP), automatic image

analysis, and tools like Global Database of Events, Language

and Tone (Leetaru and Schrodt, 2013), could leverage arti-

ficial intelligence to rapidly process large amounts of infor-

mation, including widely varying human language input,

images, and acoustic data. Such techniques could reduce

costs and efforts associated with uploading and navigating

data. NLP already is used by bibliographic software to read

articles and papers and to automatically glean bibliographic

data (Hull et al., 2008). Similar algorithms could be used to

automatically read methods and metadata descriptions and

then populate metadata fields, thereby reducing the time

required to upload data (Valdez et al., 2016). NLP algo-

rithms also could be used to convert data in white papers,

journal papers, and logbooks into digital data (i.e. virtuali-

zation; Thessen et al., 2012). Of course, accuracy of NLP-

generated data and metadata would be greatly improved if

verified by the data producers. The ledger-based methods

described above could indicate whether such verification

has occurred. Finally, automatic data discovery and NLP

will be essential for any user interface to help data users

find the data they need to answer the questions they have.

Cultural solutions
We define cultural solutions as those that result in significant

changes to human behaviour. Cultural solutions might be those

that engender trust and participation through largely social

means as well as approaches that create new incentives for data

sharing. Already, a command and control approach to require

data sharing has been undertaken by many publications (e.g. re-

quiring GenBank numbers for all DNA sequences) and granting

agencies (e.g. EU’s INSPIRE directive, the National Science

Foundation), but these rules cannot guarantee that data are easily

accessible, persistent, usable, or used. Nor do these rules necessar-

ily encourage the sharing of private or commercially acquired

data (One exception is GenBank, which has developed into an

indispensible resource of DNA sequence data; Hampton et al.,

2013).

We need a new mindset along with new incentives and

approaches that encourage voluntary data sharing. Here we re-

view several potentially disruptive ideas.

An ocean data impact factor could incentivize data sharing,

more primary data collection, and better data usability

(Chavan and Ingwersen, 2009; Costello, 2009; Ferguson

et al., 2014; Kim and Stanton, 2016; Bierer et al., 2017). For

academics, quantifiable recognition is a powerful motivat-

ing factor. A more generic Data Citation IndexSM already

exists for papers and datasets listed on the Web of Science.

An impact factor or index for ocean data that more fully

reflects how and how often data are used could encourage

data to be shared in more than just the minimum standard

required by journals and granting agencies. Data ledgers are

necessary to quantify the intellectual impact of data. More

elaborate ledgers (e.g. blockchains) could help account for

the full life history of data and thus allow impact factors to

reflect the full contribution of the original data set, includ-

ing its use in transformed data and analyses (Günther and

Chirita, 2018).

Digital community currencies could create new incentives

for data sharing within the ocean data community.

Community currencies are those, often unofficial, curren-

cies that can only be exchanged in geographically desig-

nated areas (Naqvi and Southgate, 2013). Community

currencies are often used to incentivize local spending,

sometimes on specific products like local agriculture

Table 1. Cultural and technical solutions to break down barriers to
data sharing and use.

Impact
factor Cryptocurrency

Ledgers and
block chain NLP

Data
science

Upload � � � �
Aggregate � � �
Navigate � �

Disrupting data sharing 1419
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produce or crafts. A digital community currency (DCC;

Diniz et al., 2018) could be created that rewards data pro-

viders based on the quantity, quality, or transparency of

data provided or by responsiveness to questions from users.

Unlike some favourability scores used by academic social

networks like ResearchGate, a DCC could be exchanged for

data services (e.g. archiving and storage, quality review and

assurance, higher search result visibility, or better access to

larger quantities of data). A DCC would likely be most in-

fluential in spurring data sharing by data providers who

have large amounts of data to share and for those entities

that may have both a willingness and capacity to pay to use

data (e.g. private companies that provide services like ship

routing or government agencies that need to manage natu-

ral disasters).

Social networks have proved highly disruptive in the sharing

of images, knowledge, and commentary for non-scientific

sectors (e.g. Facebook, Instagram) and more recently for

sharing publications and knowledge (e.g. ResearchGate,

Academia.com; Noorden, 2014). Furthermore, social media

has been shown to build trust between consumers and

brands in the marketing space (Schmidt and Iyer, 2015).

Because trust is a key element in the decision to share data

(Reichman et al., 2011), efforts to connect researchers with

other researchers and to end-users could increase trust and

data sharing. Adding social networking to online data plat-

forms could help share information about data quality, use-

fulness, updates, and changes and to provide feedback on

how data are used and collected (e.g. through sentiment

analysis). If closely integrated with data platforms, social

networking could not only would contribute to better

transparency, it could provide a way of letting “the crowd”

gauge quality, and could help build trust between users and

potential data providers.

Social networks, combined with data platforms, also could

facilitate connections and exchanges that in turn could spur

ideation and knowledge exchange while providing an ave-

nue for users and other researchers to announce data needs

or to signal to others they may be available to help in data

collection. Just as some ridesharing applications leverage

social networking to help riders find drivers, social net-

works could also help researchers coordinate field research

by letting others know when and where they are going into

the field or by communicating through the network about

particular needs for help in collecting data.

While social networks are not without flaws (e.g. fake

reviews; Kumar et al., 2018), many options are being devel-

oped to address these issues and to enhance the community

building opportunities for their use.

Conclusion: could a data combinatorial machine
disrupt ocean data sharing?
Data sharing platforms for the ocean are emerging rapidly—each

with a different intended audience. Some platforms focus solely

on the data while others focus on the social and cultural dimen-

sions of researchers and users. Some are built around a particular

analytical or visualization tool or interface. We applaud these

efforts and propose an over-arching umbrella, an ocean data com-

binatorial machine (ODCM), that could serve to “virtually” create

a data and social foundation that would bring together data,

researchers, and users and would also build a foundation upon

which analytical tools could be built.

Combinatorial machines (CMs) are technology platforms that

can combine aggregating and navigating technologies and social

networks. Amazon.com, Alibaba, TripAdvisor, and other com-

mercial CMs have solved many problems similar to those faced

by the ocean data sector, but applied to consumer products, mar-

kets, and travel. For instance, Amazon is an aggregation centre

that uses real warehouses and advanced distribution centres to

find the right combination of “storage” and on-demand access to

consumer items. Only selected items are kept on-hand. Amazon

also increasingly provides more and more details about the ori-

gin, composition, and technical details of products—essentially

the metadata of consumer goods. The built-in social networking

at Amazon allows consumers to: (i) rate the quality of products;

(ii) discuss experiences using the product; and (iii) in many cases

interact directly with vendors and producers.

Drawing on lessons learned from commercial CMs, we pro-

pose a new type of ODCM that would create a more centralized

way of bringing data, data producers, and data users together.

Instead of exchanging packages of consumer goods or travel ad-

vice, an ODCM would facilitate the exchange of packets of data.

Like Amazon.com, such an ODCM would not need to be a physi-

cal home to all data (and perhaps no data). Application program-

ming interfaces (APIs), software architectural design approaches

(e.g. representational state transfer), web crawling, machine

learning, and other technologies could be used to virtually pull

data from individual producers, passive data collectors, open-

data pools, and permissioned-data centres into a single platform

into the ODCM as needed. An ODCM could support NLP, case-

based reasoning, and affinity analysis to improve the human-data

interface, making searching easier, and recommending potentially

relevant data, researchers, and research projects. An ODCM could

become a convenient hub for data-related social networks—

allowing users to comment directly on data quality, how data

were used, direct links to where data has contributed to publica-

tions, updates, and other issues in the same way one can review a

commercial product. Like Amazon, an ODCM would not require

homogeneity in data quality or standards, but would benefit from

transparency about metadata, data origin, data quality, and data

provenance.

An ODCM could provide a platform upon which third-party

analytical applications and tools, both freely available and com-

mercial, could be built that could facilitate the use of ocean data

by a wider variety of users. For instance, applications could be

added to the ODCM that translate different data standards or

units to common formats for selected types of data. Data self-

assessment tools like the ARDC Fair Data Tool (https://www.

ands-nectar-rds.org.au/fair-tool) could be linked directly to the

ODCM to help data producers and providers (and the general

public) determine the degree to which individual datasets meet

FAIR standards (e.g. findable, accessible, interoperable, and reus-

able; Wilkinson et al., 2016). Mapping applications, habitat suit-

ability modelling tools (e.g. Octopus, https://octopus.zoo.ox.ac.

uk/beta), and other apps could be built as needed by app-

developers.

Each of the tools proposed above already exists, but not always

specifically for ocean data. No data platform yet exists that com-

bines all of the above approaches for ocean data. The next step is

to determine how to build upon what we already know from

other sectors and how to do so in a way that creates a financially
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sustainable ocean data ecosystem (Warren, 2016). While public

funding of data collection and many data lakes and portals will al-

ways be a part of the ocean data seascape, we must do more to

think out-of-the-box to find ways of making an ODCM finan-

cially viable. While many types of data must remain open, propri-

etary data could be exchanged within the ODCM through

standard commercial (for hire) agreements, made possible by the

contracts implicit in blockchains. Like commercial CMs, the

ODCM could be made more financially viable through the use of

revenue generating targeted advertisements (e.g. by journals and

scientific instrument companies, such as used to support

ResearchGate) and faster, larger downloading options could be

made available for a fee. Finding new business models for data

platforms will be key to their success and sustainability. While the

ODCM should not present financial barriers to access open data,

it could charge for using enhanced access, navigation, and other

services provided by the ODCM and its community (similar to

the model employed by commercial weather, wind, and wave

forecasting services).

An ODCM should be designed so that it does not represent an

added layer of complexity to an already highly complex universe

of ocean data. Instead, the ODCM as we envision it would help

data producers and users better manage the increasingly complex

and messy world of ocean data and to fully benefit from the infor-

mation and understanding that could come from harnessing that

complexity. Combined with the rapid advances in data science

and visualization, the ODCM could provide better access to the

raw information that a new breed of ocean scientists and planners

need to measure, model, and manage the ocean. Finally, an

ODCM could provide the critical mass needed to create a new,

global community of researchers, citizen scientists, data pro-

ducers and users, government analysts, and others that could, it-

self, transform the way we source and share ocean data.

The future of ocean health, and the planet’s health, depends on

our ability to coordinate effective action to resolve the drivers of

environmental degradation. Improved access to and use of data

will greatly enhance our ability to plan, implement and monitor

the impacts of policy and management. Advances in data science

and social networking provide great hope and opportunity that

we can revolutionize the way we collect and use ocean data, but

only if we look to collaborate outside the ocean sector to make

the best use of what others have achieved.
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