

Data distribution

Jan 2021

Quality Control and GDAC

Jan 2021

- Real-time quality control (RTQC) is performed on data within 24 hours, which is followed by delayed mode quality control (DMQC) procedure.
- The Argo Data Management Team (ADMT) provides advice on these procedures argo-dm@jcommops.org
- Detailed information is outlined in the BGC-Argo Guide

Bittig et a. (2019) *Front. Mar. Sci.* 10.3389/fmars.2019.00502

DMQC dynamic climatologies

To improve data accuracy

CANYON-B github.com/HCBScienceProducts/

github.com/BRCScienceProducts/LIRs/ regional MLR

e.g. Williams et al. (2016) Geo. Res. Lett

User QC considerations

- DMQC is performed to the expertise of the data manager and ADMT recommendations
- The accuracy of raw data is not suitable for scientific application
- For specific applications, users should perform their own QC
- Contact the ADMT if you develop a procedure that improves data accuracy

Tip: Check the "SCIENTIFIC_CALIB_EQUATION", "SCIENTIFIC_CALIB_COEFFICIENT" and "SCIENTIFIC_CALIB_COMMENT" in b-files or contact data managers for further details on applied calibration and QC procedures

Data stream

Chlorophyll-a

Jan 2021

Fluorometer

Targeted to chlorophyll fluorescence

Expected Bias and RMSE*
Highly variable and < 6%

Community composition, nutrient state and light conditions affect returning red light

Daytime non-photochemical quenching (NPQ) suppresses fluorescence

RTQC

- Dark offset
- NPQ correction (Xing 2012)
- Gain adjustment of factor 0.5
- Range test: [-0.1, 50] μmol kg⁻¹
- Negative spike test

DMQC

- In progress
- Recommend user adjusts gain regionally and performs visual checks

* If corrected to regional ship-based measurements, biases < 10 %. If not corrected, biases up to 300 %.

Resources

Schmechtig et al. (2014) Argo Data Management Team Mignot et al. (2019) *Geophys. Res. Lett.*Xing et al. (2012) *Limnol. Oceanogr.-Methods*Roesler et al. (2017) *Limnol. Oceanogr.-Methods*Johnson et al. (2017) *J. Geophys. Res.-Oceans*To go further...

Thomalla et al. (2018) Limnol. Oceanogr.-Methods

10.13155/35385

10.1029/2018gl080541

10.4319/lom.2012.10.483

10.1002/lom3.10185

10.1002/2017jc012838

10.1002/lom3.10234

Optical Backscatter

Jan 2021

Optical backscatter sensor

In oceanic conditions, it is a good regional proxy for POC

Expected Bias and RMSE* N/A and 35 mg POC m⁻³

Phytoplankton, detritus, bacteria, zooplankton, dust and bubbles

Spikes can give information on size

Response affected by seawater, concentration, size, shape and composition

Note: Different sensors are deployed in BGC-Argo, with alternate θ and emitted light

RTQC

Range test: [-0.01, 0.1] m⁻¹

DMQC

Recommend user adjusts to POC regionally and performs visual checks based on application

* Error estimate based on DMQC data compared to regional ship-based measurements.

Resources

Schmechtig et al. (2015) Argo Data Management Team Briggs et al. (2020) Science

Johnson et al. (2017) J. Geophys. Res.-Oceans

Briggs et al. (2011) Deep Sea Res.-Pt. 1

To go further...

Bellacicco et al. (2019) Geophys. Res. Lett.

Wojtasiewicz et al. (2018) J. Atmos. Ocean. Tech.

10.13155/39459

10.1126/science.aay1790

10.1002/2017jc012838

10.1016/j.dsr.2011.07.007

10.1029/2019gl084078

10.1175/JTECH-D-18-0027.1

Jan 2021

Potentiometric Electrodes

Expected Bias and RMSE* 0.005 and 0.007

RTQC

- Range test: [7.3, 8.5]
- Spike test: 0.04

DMQC

- Offset adjustment with dynamic climatology
- Visual check

Resources

Johnson et al. (2017) Argo Data Management Team Williams et al. (2017) Global Biogeochem. Cy. Williams et al. (2016) Geophys. Res. Lett. Johnson et al. (2017) J. Geophys. Res.-Oceans

10.13155/57195

10.1002/2016gb005541

10.1002/2016GL068539

10.1002/2017jc012838

^{*} Error estimate based on DMQC data compared to regional ship-based measurements.

Irradiance

Jan 2021

Radiometer

Expected Bias and RMSE* <20 μW cm⁻² nm⁻¹ and 7-27%

RTQC

Range test

DMQC

In progress

* Dependent on wavelength and calculated by comparison to modelled data.

Resources

Poteau et al. (2019) Argo Data Management Team Schmechtig et al. (2017) Argo Data Management Team *To go further...*

Organelli et al. (2016) *J. Atmos. Oceanic Technol.* Wojtasiewicz et al. (2018) *Remote Sens. Environ.*

10.13155/62466 10.13155/51541

10.1175/jtech-d-15-0193.1 10.1016/j.rse.2018.02.057

Oxygen

Jan 2021

Fluorescence life-time based sensor

Expected Bias and RMSE* 3 and 0.1 μmol kg⁻¹

Note: SBE43_IDO is not a fluorescence life-time based sensor. All others are.

RTQC

- Range test: [-5, 600] umol/kg
- Spike test: 50 umol/kg
- Gradient test: 50 umol/kg
- Gain adjusted (WOA)

DMQC

- Gain and drift in-situ air calibration (NCEP)
- Hook removal
- Visual check

Resources

Thierry et al. (2018) Argo Data Management Team Mignot et al. (2019) *Geophys. Res. Lett.*Bittig et al. (2018) *Front. Mar. Sci.*Johnson et al. (2017) *J. Geophys. Res.-Oceans*Bushinsky et al. (2016) *Limnol. Oceanogr.-Methods*Bittig et al. (2014) *Limnol. Oceanogr.-Methods*

10.13155/46542

10.1029/2018gl080541

10.3389/fmars.2017.00429

10.1002/2017jc012838

10.1002/lom3.10107

10.4319/lom.2014.12.617

^{*} Error estimate based on DMQC data compared to regional ship-based measurements.

Nitrate

Jan 2021

Optical nitrate sensor

Expected Bias and RMSE* 0.5 and 0.5 μmol kg⁻¹

RTQC

Not standardised by ADMT

DMQC

- Drift correction with dynamic climatology
- Visual check

Resources

Johnson et al. (2018) Argo Data Management Team Mignot et al. (2019) *Geophys. Res. Lett.* Johnson et al. (2017) *J. Geophys. Res.-Oceans* 10.13155/46121

10.1029/2018gl080541

10.1002/2017jc012838

^{*} Error estimate based on DMQC data compared to regional ship-based measurements.