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Abstract

Estimating the abundance and spatial distribution of animal and plant populations is
essential for conservation and management. We introduce the R package Distance that
implements distance sampling methods to estimate abundance. We describe how users
can obtain estimates of abundance (and density) using the package as well as documenting
the links it provides with other more specialized R packages. We also demonstrate how
Distance provides a migration pathway from previous software, thereby allowing us to
deliver cutting-edge methods to the users more quickly.
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1. Introduction

Distance sampling (Buckland, Anderson, Burnham, Borchers, and Thomas 2001; Buckland,
Anderson, Burnham, Laake, Borchers, and Thomas 2004; Buckland, Rexstad, Marques, and
Oedekoven 2015) encompasses a suite of methods used to estimate the density and/or abun-
dance of biological populations. Distance sampling can be thought of as an extension of plot
sampling. Plot sampling involves selecting a number of plots (small areas) at random within
the study area and counting the objects of interest that are contained within each plot. By
selecting the plots at random we can assume that the density of objects in the plots is repre-
sentative of the study area as a whole. One of the key assumptions of plot sampling is that
all objects within each of the plots are counted. Distance sampling relaxes this assumption in
that observers are no longer required to detect (i.e., either by eye, video/audio recording, etc.)
and count everything within selected plots. While plot sampling techniques are adequate for
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static populations occurring at high density they are inefficient for more sparsely distributed
populations. Distance sampling provides a more efficient solution in such circumstances.

Conventional distance sampling assumes the observer is located either at a point or moving
along a line and will observe all objects that occur at the point or on the line. The further
away an object is from the point or line (more generally, the sampler or transect) the less
likely it is that the observer will see it. We can use the distances to each of the detected
objects from the line or point to build a model of the probability of detection given distance
from the sampler — the detection function. The detection function can be used to infer
how many objects were missed and thereby produce estimates of density and/or abundance.
Exact distances can be recorded or distances can be collected in bins if exact distances are
hard to estimate (sometimes referred to as “grouped” or “interval” data). To ensure that
the model is not overly influenced by distances far from zero and that observer time is not
spent looking for far away objects, we discard or do not record observations beyond a given
truncation distance (during analysis or while collecting data in the field).

The Windows program Distance (or “DISTANCE”; for clarity henceforth “Distance for Win-
dows”, Thomas et al. 2010) can be used to fit detection functions to distance sampling data.
It was first released (versions 1.0-3.0; principally programmed by Jeff Laake while working at
the National Marine Mammal Laboratory) as a console-based application (this in turn was
based on earlier software TRANSECT, Burnham, Anderson, and Laake 1980 and algorithms
developed in Buckland 1992), before the first graphical interface (Distance for Windows 3.5)
was released in November 1998. Since this time it has evolved to include various design and
analysis features (Thomas et al. 2010). Distance for Windows versions 5 onwards have in-
cluded R (R Core Team 2019) packages as the analysis engines providing additional, more
complex analysis options than those offered by the original (Fortran) code.

As Distance for Windows becomes increasingly reliant on analyses performed in R and many
new methods are being developed, we are encouraging the use of our R packages directly. R
provides a huge variety of functionality for data exploration and reproducible research, much
more than is possible in Distance for Windows.

Until now those wishing to use our R packages for straightforward distance sampling analyses
would have had to negotiate the package mrds (Laake, Borchers, Thomas, Miller, and Bishop
2018) designed for mark-recapture distance sampling (Burt, Borchers, Jenkins, and Marques
2014), requiring a complex data structure to perform analyses. Distance (Miller 2019) is a
wrapper package around mrds making it easier to get started with basic distance sampling
analyses in R. The most basic detection function estimation only requires a numeric vector
of distances. Here we demonstrate how to use Distance to fit detection functions, perform
model checking and selection, and estimate abundance.

1.1. Distance sampling

The distribution of the observed distances is a product of detectability (sometimes referred
to as “perception bias”; Marsh and Sinclair 1989) and the distribution of the animals with
respect to the line or point. Our survey design allows us to assume a distribution for the
animals with respect to the sampler.

For line transect studies we assume that objects are uniformly distributed with respect to
the line (i.e., the number of animals available for detection is the same at all distances).
For point transect surveys, area increases linearly with radial distance, implying a triangular
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Figure 1: Panels show an example detection function (left), the probability density function of
object distances (middle) and the resulting PDF of detection distances (right) for line transects
(top row) and point transects (bottom row). The PDF of observed detection distances in the
right hand plots are obtained by multiplying the detection function by the PDF of object
distances and rescaling. In this example, detection probability becomes effectively zero at
500 (distances shown on x-axis are arbitrary).

distribution with respect to the point. Figure 1 shows how these distributions, when combined
with a detection function, give rise to the observed distribution of recorded distances. Figure 2
shows simulated sampling of a population of 500 objects using line and point transects and
their corresponding histograms of observed detection distances. Note that for the purposes of
distance sampling an “object” may either refer to an individual in a population or a cluster
(or group) of individuals. Good survey design is essential to produce reliable density and
abundance estimates from distance sampling data. Survey design is beyond the scope of
this article but we refer readers to (Buckland et al. 2001, Chapter 7) and (Buckland et al.
2015, Chapter 2) for introductory information; Strindberg, Buckland, and Thomas (2004)
contains information on automated survey design using geographical information systems
(GIS); Thomas, Williams, and Sandilands (2007) gives an example of designing a distance
sampling survey in a complex region. We also note that Distance for Windows includes a
GIS survey design tool (Thomas et al. 2010).

Distance provides a selection of candidate functions to describe the probability of detection
and estimates the associated parameters using maximum likelihood estimation. The prob-
ability of detecting an object may not only depend on how far it is from the sampler but
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Figure 2: Examples of line (top row) and point (bottom row) transect sampling. Left side
plots show an example of a survey of the unit square containing a population of 500 objects;
blue dashed lines (top plot) and triangles (bottom plot) indicate sampler placement, red dots
indicate detected individuals and gray dots give the locations of unobserved individuals. The
right side of the figure shows histograms of observed distances.

also on other factors such as weather conditions, ground cover, cluster size etc (Marques,
Thomas, Fancy, and Buckland 2007). The Distance package also allows the incorporation of
such covariates into the detection function allowing the detection function scale parameter to
vary based on these covariates.

Having estimated the detection function’s parameters, one can then integrate out distance
from the function (as the detection function describes the probability of detection given dis-
tance) to get an “average” probability of detection (in the sense of averaging over distances,
conditional on any observed covariates), which can be used to correct the observed counts.
Summing the corrected counts gives an estimate of abundance in the area covered by surveys,
which can be multiplied up to the total study area.

In addition to randomly placed samplers distance sampling relies on three other main assump-
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tions. Firstly, all objects directly on the transect line or point (i.e., those at zero distance)
are detected (see Section 6 for methods to deal with the situation when this is not possible).
Secondly, objects are stationary or detected prior to any movement. Thirdly, distance to
the object must be measured accurately, or the observation allocated to the correct distance
bin for grouped data. Depending on the survey species some of these assumptions may be
more difficult to meet than others. Further information on field methods to help meet these
assumptions can be found in Buckland et al. (2001) and Buckland et al. (2015).

The rest of the paper has the following structure: we describe data formatting for Distance;
candidate detection function models are described and examples fitted in R. We then show
how to perform model checking, goodness of fit testing and model selection. We go on to
show how to estimate abundance, including stratified estimates of abundance. The final two
sections of the article look at extensions (both in terms of methodology and software) and put
the package in a broader context amongst other R packages used for estimating the abundance
of biological populations from distance sampling data.

2. Data

We introduce two example analyses performed in Distance: one line transect and one point
transect. These data sets have been chosen as they represent typical data seen in practice.
The below example analyses are not intended to serve as guidelines, but to demonstrate
features of the software. Practical advice on approaches to analysis is given in Thomas et al.
(2010).

2.1. Minke whales

The line transect data have been simulated from models fitted to Antarctic Minke whale
(Balaenoptera bonaerensis) data. These data were collected as part of the International
Whaling Commission’s International Decade of Cetacean Research Southern Ocean Whale
and Ecosystem Research (IWC IDCR-SOWER) program 1992-1993 austral summer surveys.
Data consist of 99 observations on 25 transects, which were stratified based on location (near
or distant from ice edge) and effort data (transect lengths). Further details on the survey are
available in Branch and Butterworth (2001) (data are simulated based on the design used for
“1992/93 Area III” therein).

2.2. Amakihi

The point transect data set consists of 1485 observations of Amakihi (Hemignathus virens;
a Hawaiian songbird), collected at 41 points between 1992 and 1995. The data include
distances and two covariates collected during the survey: observer (a three level factor), time
after sunrise (transformed to minutes (continuous) or hours (factor) covariates). Data are
analyzed comprehensively in Marques et al. (2007).

2.3. Data setup

Generally, data collected in the field will require some formatting before use with Distance,
though there are a range of possible formats, dependent on the model specification and the
output required:
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e In the simplest case, where the objective is to estimate a detection function and exact
distances are collected, all that is required is a numeric vector of distances.

o To include additional covariates into the detection function (see “Detection functions”)
a data.frame is required. Each row of the data.frame contains the data on one ob-
servation. The data.frame must contain a column named distance (containing the
observed distances) and additional named columns for any covariates that may affect
detectability (for example observer or seastate). The column name size is reserved
for the cluster sizes (sometimes referred to as group sizes) in this case each row rep-
resents an observation of a cluster rather than individual (see Buckland et al. 2001,
Section 3.1 for more on defining clusters and Section 6 for one approach to dealing with
uncertain cluster size). Additional reserved names include object and detected, these
are not required for conventional distance sampling and should be avoided (see Section 6
for an explanation of their use).

e To estimate density or to estimate abundance beyond the sampled area, additional
information is required. Additional columns should be included in the data.frame
specifying: Sample.Label, the ID of the transect; Effort, transect effort (for lines their
length and for points the number of times that point was visited); Region.Label, the
stratum containing the transect (which may be from pre- or post-survey stratification,
see “Estimating abundance and variance”); Area, the area of the strata. Transects
which were surveyed but have no observations must be included in the data set with
NA for distance and any other covariates. We refer to this data format (where all
information is contained in one table) as “flatfile” as it can be easily created in a single
spreadsheet.

As we will see in Section 6, further information is also required for fitting more complex
models.

If distances were collected in bins the column distance is replaced by two columns distbegin
and distend referring to the distance interval start and end cutpoints. More information on
binned data is included in Buckland et al. (2001) Sections 4.5 and 7.4.1.2.

The columns distance, Area and (in the case of line transects) Effort have associated units
(though these are not explicitly included in a Distance analysis). We recommend that data in
these columns are converted to SI units before starting any analysis to ensure that resulting
abundance and density estimates have sensible units. For example, if distances from a line
transect survey are recorded in meters, the Effort columns should contain line lengths also
in meters and the Area column gives the stratum areas in square meters. This would lead to
density estimates of animals per square meter.

The Minke whale data follows the “flatfile” format given in the last bullet point:

R> library("Distance")
R> data("minke")
R> head (minke)

Region.Label Area Sample.Label Effort distance
1 South 84734 1 86.75 0.10
2 South 84734 1 86.75 0.22
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3 South 84734 1 86.75 0.16
4 South 84734 1 86.75 0.78
5 South 84734 1 86.75 0.21
6 South 84734 1 86.75 0.95

Whereas the Amakihi data lacks effort and stratum data:

R> data("amakihi")
R> head(amakihi)

survey object distance obs mas has detected

1 July 92 1 40 TJS 50 1 1
2 July 92 2 60 TJS 50 1 1
3 July 92 3 45 TJS 50 1 1
4 July 92 4 100 TJS 50 1 1
5 July 92 5 1256 TJS 50 1 1
6 July 92 6 120 TJS 50 1 1

We will explore the consequences of including effort and stratum data in the analysis below.

3. Detection functions

The detection function models the probability P(object detected | object at distance y) and
is usually denoted g¢(y;0) where y is distance (from a line or point) and 6 is a vector of
parameters to be estimated. Our goal is to estimate an average probability of detection (p,
average in the sense of an average over distance from 0 to truncation distance w), so we must
integrate out distance from the detection function. Letting x denote a perpendicular distance
from a line and r denote radial distance from a point:

S Lg(z;0)dn for lines,

p= o =5g(r;@)dr  for points,
where the fractions pre-multiplying the detection function describe the distribution of objects
with respect to the sampler, taking into account the geometry of the sampler (usually referred
to as the probability density function of (object) distances and denoted 7(y); Buckland et al.
2001, Chapter 3). Figure 1 shows the relationship between the detection function, the prob-
ability density function of object distances and the probability density function of observed
distances.

Models for the detection function are expected to have the following properties (Buckland
et al. 2015, Chapter 5):

o Shoulder: We expect observers to be able to see objects near them, not just those
directly in front of them. We therefore expect the detection function to be flat near the
line or point.

e Non-increasing: We do not think that observers should be more likely to see distant
objects than those nearer the transect. If this occurs, it usually indicates an issue
with survey design or field procedures (for example that the distribution of objects with
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Key function Form Adjustment series Form

Uniform 1/w Cosine 9 | a, cos(omy/w)
Simple polynomial 9, ao(y/w)?

Half-normal  exp (—%) Cosine Z(?:Q a, cos(omy/w)
Hermite polynomial 3%, aoHao(y /o)

Hazard-rate 1 —exp [— (%)_b] Cosine 29, a, cos(omy/w)
Simple polynomial Y2, a,(y/w)?°

Table 1: Modelling options for key plus adjustment series models for the detection function.
For each key function the default adjustments are cosine in Distance. Note that in the
adjustments functions distance is divided by the width or the scale parameter to ensure the
shape of adjustment independent of the units of y (Marques et al. 2007); defaults are shown
here, though either can be selected to rescale the distances.

respect to the line, 7(y), is not what we expect), so we do not want the detection function
to model this (Marques, Buckland, Tosh, McDonald, and Borchers 2010; Marques,
Buckland, Bispo, and Howland 2012; Miller and Thomas 2015).

e Model robust: Models should be flexible enough to fit many different shapes.

e Pooling robust: Many factors can affect the probability of detection and it is not possible
to measure all of these. We would like models to produce unbiased results without
inclusion of these factors.

o Estimator efficiency: We would like models to have low variances, given they satisfy
the other properties above (which, if satisfied, would give low bias).

The shoulder condition also implies that it is crucial that the detection function accurately
models detectability at small distances and that we are less worried by its behavior further
away from (. Given these criteria, we can formulate models for g.

3.1. Formulations

There is a wide literature on possible formulations for the detection function (Buckland 1992;
Eidous 2005; Becker and Quang 2009; Giammarino and Quatto 2014; Miller and Thomas
2015; Becker and Christ 2015). Distance includes the most popular of these models. Here

we detail the most popular detection function approach: “key function plus adjustments”
(K+A).

Key function plus adjustments (K+A)

Key function plus adjustment terms (or adjustment series) models are formulated by taking
a “key” function and optionally including “adjustments” to it to improve the fit (Buckland
1992). Mathematically we formulate this as:

9(y; 0) < k(y; Oey) (1 + a0 (y; Oadjust)) »

where k is the key function and «p is some series of functions (given in Table 1), described
as an adjustment of order O. Subscripts on the parameter vector indicate those parameters
belonging to each part of the model (i.e., @ = (Oxey, Oadjust))-
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Figure 3: Half-normal (top row) and hazard-rate (bottom row) detection functions without
adjustments, varying scale () and (for hazard-rate) shape (b) parameters (values are given
above the plots). On the top row from left to right, the study species becomes more detectable
(higher probability of detection at larger distances). The bottom row shows the hazard-rate
model’s more pronounced shoulder.
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Figure 4: Possible shapes for the detection function when cosine adjustments are included for
half-normal and hazard-rate models.

Available models for the key are as follows:

exp (— %) half-normal,
k(y) =14 1—exp ((—%)_b> hazard-rate,
1/w uniform.

Possible modelling options for key and adjustments are given in Table 1 and illustrated in
Figures 3 and 4. We select the number of adjustment terms (K) by AIC (further details
in Section 4). When adjustment terms are used it is necessary to standardize the results to
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ensure that ¢(0) = 1:

k(y; okey) (1 + aO(y; Hadjust)>

k(07 Okey) (1 + 040(0; gadjust))

A disadvantage of K+A models is that we must resort to constrained optimization (via the

Rsolnp package; Ghalanos and Theussl 2015) to ensure that the resulting detection function
is monotonic non-increasing over its range.

9(y;6) =

It is not always necessary to include adjustments (except in the case of the uniform key) and
in such cases we refer to these as “key only” models (see the next section and Section 4).
Adjustment terms increase the flexibility of the detection function but this added flexibility
comes at the expense of additional parameters to be estimated. The analyst must consider
whether the process giving rise to the distribution of detection distances should be modelled
with shapes depicted in Figure 4.

Covariates

There are many factors that can affect the probability of detecting an object: observer skill,
cluster size (if objects occur in clusters), the vessel or platform used, sea state, other weather
conditions, time of day and more. In Distance we assume that these covariates affect detection
only via the scale of the detection function (and do not affect the shape).

Covariates can be included in this formulation by considering the scale parameter from the
half-normal or hazard-rate detection functions as a(n exponentiated) linear model of the (J)
covariates (z; a vector of length J for each observation):

J
o(z) =exp | o+ > Bz

j=1

Including covariates has an important implication for our calculation of detectability. We
do not know the true distribution of the covariates, we therefore must either: (i) model the
distribution of the covariates and integrate the covariates out of the joint density (thus making
strong assumptions about their distribution), or (ii) calculate the probability of detection
conditional on the observed values of the covariates (Marques and Buckland 2003). We opt
for the latter:

w1
/ —g(x,2z;;0)dx for lines,
0 w

p\z;) =
(=) w 2r .

/ —g(r,2;;0)dr for points,

0 w

where z; is the vector of J covariates associated with observation ¢. For covariate models, we
calculate a value of “average” probability of detection (average in the sense of distance being
integrated out) per observation. There are as many unique values of p(z;) as there are unique
covariate combinations in our data.

K+A models that include covariates and one or more adjustments cannot be guaranteed to be
monotonic non-increasing for all covariate combinations. Without a model for the distribution
of the covariates, it is not possible to know what the behavior of the detection function will
be across the ranges of the covariates. As such we cannot set meaningful constraints on
monotonicity. For this reason, we advise caution when using both adjustments and covariates
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in a detection function (see Miller and Thomas 2015, for an example of when this can be
problematic and an alternative detection function formulation to solve this issue).

3.2. Fitting detection functions in R

A detection function can be fitted in Distance using the ds function. Here we apply some of
the possible formulations for the detection function we have seen above to the minke whale
and amakihi data.

Minke whale

First we fit a model to the minke whale data, setting the truncation at 1.5km and using the
default options in ds very simply:

R> minke_hn <- ds(minke, truncation = 1.5)

Starting AIC adjustment term selection.

Fitting half-normal key function

Key only model: not constraining for monotonicity.

AIC= 46.872

Fitting half-normal key function with cosine(2) adjustments
AIC= 48.872

Half-normal key function selected.

Note that when there are no covariates in the model, ds will add adjustment terms to the
model until there is no improvement in AIC.

Figure 5 (left panel) shows the result of calling plot on the resulting model object. We can
also call summary on the model object to get summary information about the fitted model
(we postpone this until the next section).

A different form for the detection function can be specified via the key argument to ds. For
example, a hazard rate model can be fitted as:

R> minke_hrcos <- ds(minke, truncation = 1.5, key = "hr")
Starting AIC adjustment term selection.

Fitting hazard-rate key function

Key only model: not constraining for monotonicity.

AIC= 48.637

11
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Figure 5: Left: fitted detection function overlayed on the histogram of observed distances for
the minke whale data using half-normal model. Centre and right: plots of the probability
density function for the amakihi models. Centre, hazard-rate with observer as a covariate;
right, hazard-rate model with observer and minutes after sunrise as covariates. Points in-
dicate probability of detection for a given observation (given that observation’s covariate
values) and lines indicate the average detection function (averaged over covariates, observer
or observer-+minutes after sunrise).

Fitting hazard-rate key function with cosine(2) adjustments
AIC= 50.386
Hazard-rate key function selected.

Here ds also fits the hazard-rate model then hazard-rate with a cosine adjustment but the
AIC improvement is insufficient to select the adjustment, so the hazard-rate key-only model
is returned.

Other adjustment series can be selected using the adjustment argument and specific orders
of adjustments can be set using order. For example, to specify a uniform model with cosine
adjustments of order 1 and 2 we can write:

R> minke_unifcos <- ds(minke, truncation = 1.5, key = "unif",
+ adjustment = "cos", order = c(1, 2))

Fitting uniform key function with cosine(1,2) adjustments
AIC= 48.268

Hermite polynomial adjustments use the code "herm" and simple polynomials "poly", ad-
justment order should be in line with Table 1.
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Amakihi

ds assumes the data given to it has been collected as line transects, but we can switch to point
transects using the argument transect = "point". We can include covariates in the scale
parameter via the formula = ~ ... argument to ds. A hazard-rate model for the amakihi
that includes observer as a covariate and a truncation distance of 82.5m (Marques et al. 2007)
can be specified using :

R> amakihi_hr obs <- ds(amakihi, truncation = 82.5, transect = "point",
+ key = "hr", formula = ~ obs)

Model contains covariate term(s): no adjustment terms will be included.
Fitting hazard-rate key function

AIC= 10778.448

No survey area information supplied, only estimating detection function.

Note that here, unlike with the minke whale data, ds warns us that we have only supplied
enough information to estimate the detection function (not density or abundance).

While automatic AIC selection is performed on adjustment terms, model selection for covari-
ates must be performed manually. Here we add a second covariate: minutes after sunrise. We
will compare these two models further in the following section.

R> amakihi_hr obs_mas <- ds(amakihi, truncation = 82.5, transect = "point",
+ key = "hr", formula = ~obs + mas)

Model contains covariate term(s): no adjustment terms will be included.
Fitting hazard-rate key function

AIC= 10777.376

No survey area information supplied, only estimating detection function.

As with the minke whale model, we can plot the resulting models (Figure 5, middle and
right panels). However, for point transect studies, probability density function plots give a
better sense of model fit than the detection function plots. This is because when plotting the
detection function for point transect data, the histogram must be rescaled to account for the
geometry of the point sampler. The amakihi models included covariates, so the plots show
the detection function averaged over levels/values of the covariate. Points on the plot indicate
probability of detection for each observation. For the amakihi_hr_obs model we see fairly
clear levels of the observer covariate in the points. Looking at the right panel of Figure 5,
this is less clear when adding minutes after sunrise (a continuous covariates) to the model.

13
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4. Model checking and model selection

As with models fitted using 1m or glm in R, we can use summary to give useful information
about our fitted model. For our hazard-rate model of the amakihi data, with observer as a
covariate:

R> summary (amakihi_hr_obs)

Summary for distance analysis
Number of observations : 1243
Distance range : 0 - 82.5

Model : Hazard-rate key function
AIC : 10778.45

Detection function parameters
Scale coefficient(s):

estimate se
(Intercept) 3.06441741 0.10878119
obsTJS 0.53017383 0.09956538
obsTKP 0.08885315 0.18071853

Shape coefficient(s):
estimate se
(Intercept) 0.869001 0.06261767

Estimate SE Ccv
Average p 0.3142725  0.02044131 0.06504326
N in covered region 3955.1667633 274.22825571 0.06933418

This summary information includes details of the data and model specification, as well as the
values of the coefficients (/3;) and their uncertainties, an “average” value for the detectabil-
ity (see “Estimating abundance and variance” for details on how this is calculated) and its
uncertainty. The final line gives an estimate of abundance in the area covered by the survey
(see the next section; though note this estimate does not take into account cluster size).

4.1. Goodness of fit

We use a quantile-quantile plot (Q-Q plot) to visually assess how well a detection functions fits
the data when we have exact distances. The Q-Q plot compares the cumulative distribution
function (CDF) of the fitted detection function to the distribution of the data (empirical
distribution function or EDF). The Q-Q plots in Distance plot a point for every observation.
The EDF is the proportion of points that have been observed at a distance equal to or less than
the distance of that observation. The CDF is calculated from the fitted detection function
as the probability of observing an object at a distance less than or equal to that of the given
observation. This can be interpreted as assessing whether the number of observations up
to a given distance is in line with what the model says they should be. As usual for Q-Q
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plots, “good” models will have values close to the line y = x, poor models will show greater
deviations from that line.

Q-Q plots can be inspected visually, though this is prone to subjective judgments. There-
fore, we also quantify the Q-Q plot’s information using a Cramér-von Mises test (Burnham,
Buckland, Laake, Borchers, Bishop, and Thomas 2004) to test whether points from the EDF
and CDF are from the same distribution. The Cramér-von Mises test uses the sum of all the
distances between a point on the Q-Q plot and the line y = x to form a test statistic. As it
takes into account more information and is therefore more powerful, the Cramér-von Mises is
generally more powerful than the Kolmogorov-Smirnov test, which uses the largest difference
between a point on the Q-Q plot and the line y = x (which is also available in Distance,
though is not produced by default as it requires computationally demanding bootstraps). A
significant result from either test gives evidence against the null hypothesis (that the data
arose from the fitted model), suggesting that the model does not fit the data well.

We can generate a Q-Q plot and test results using the gof_ds function. Figure 6 shows the
goodness of fit tests for two models for the amakihi data. We first fit a half-normal model
without covariates or adjustments (setting adjustment = NULL will force ds to fit a model
with no adjustments):

R> amakihi_hn <- ds(amakihi, truncation = 82.5, transect = "point',
+ key = "hn", adjustment = NULL)

Fitting half-normal key function

Key only model: not constraining for monotonicity.

AIC= 10833.841

No survey area information supplied, only estimating detection function.
R> gof_ds(amakihi_hn)

Goodness of fit results for ddf object

Distance sampling Cramer-von Mises test (unweighted)
Test statistic = 0.930828 p-value = 0.00357795

R> gof_ds(amakihi_hr_obs)
Goodness of fit results for ddf object

Distance sampling Cramer-von Mises test (unweighted)
Test statistic = 0.198335 p-value = 0.270719

We conclude that the half-normal model should be discarded. Both hazard-rate models
(output only shown for hazard-rate model with observer and minutes after sunrise) had non-
significant goodness of fit test statistics and are both therefore deemed plausible models. The
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Figure 6: Comparison of quantile-quantile plots for a half-normal model (no adjustments, no
covariates; left) and hazard-rate model with observer as a covariate (right) for the amakihi
data.

corresponding Q-Q plots are shown in Figure 6, comparing the half-normal model with the
hazard-rate model with observer and minutes after sunrise included.

For non-exact distance data, a y>-test can be used to assess goodness of fit (see Buckland
et al. 2001, Section 3.4.4). x2-test results are produced by gof_ds when binned/grouped
distances are provided.

4.2. Model selection

Once we have a set of plausible models, we can use Akaike’s Information Criterion (AIC) to
select between models (see e.g. Burnham and Anderson 2003). Distance includes a function
to create table of summary information for fitted models, making it easy to get an overview
of a large number of models. The summarize_ds_models function takes models as input and
can be especially useful when paired with knitr’s kable function to create summary tables
for publication (Xie 2015). An example of this output (with all models included) is shown in
Table 2 and was generated by the following call to summarize_ds_models:

summarize_ds_models(amakihi_hn, amakihi_hr_obs, amakihi_hr_obs_mas)

In this case we may be skeptical about the top model as selected by AIC being truly better
than the second best model, as there is only a very small difference in AICs. Generally,
if the difference between AICs is less than 2, we may investigate multiple “best” models,
potentially resorting to the simplest of these models. In the authors’ experience, it is often
the case that models with similar AICs will have similar estimates probabilities of detection,
so in practice there is little difference in selecting between these models. It is important to
note that comparing AICs between models with different truncations is not appropriate, as
models with different truncation use different data.
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Model Key function Formula CvM p value P, se(P,) AAIC
amakihi_hr_obs_mas Hazard-rate obs + mas 0.389 0.319 0.020 0.000
amakihi_hr obs Hazard-rate obs 0.271 0.314 0.020 1.073
amakihi_hn Half-normal 1 0.004 0.351 0.011 56.465

Table 2: Summary for the detection function models fitted to the amakihi data. “CvM”
stands for Cramér-von Mises, P, is average detectability (see “Estimating abundance and
variance”), se is standard error. Models are sorted according to AIC.

5. Estimating abundance and variance

Though fitting the detection function is the primary modelling step in distance sampling, we
are really interested in estimating density or abundance. It is also important to calculate our
uncertainty for these estimates. This section addresses these issues mathematically before
showing how to estimate abundance and its variance in R.

5.1. Abundance

We wish to obtain the abundance in a study region, of which we have sampled a random
subset. To do this we first calculate the abundance in the area we have surveyed (the covered
area) to obtain N¢, we can then scale this up to the full study area by multiplying it by the
ratio of covered area to study area. We discuss other methods for spatially explicit abundance
estimation in Section 6.

First, to estimate abundance in the covered area (Nc), we use the estimates of detection
probability (the {p(z;);i =1,...,n}, above) in a Horvitz-Thompson-like estimator:

N¢ = ; ) (1)

where s; are the sizes of the observed clusters of objects, which are all equal to 1 if objects
only occur singly (Borchers and Burnham 2004). Thompson (2002) is the canonical reference
to this type of estimator. Intuitively, we can think of the estimates of detectability (p(z;)) as
“inflating” the cluster sizes (s;), we then sum over the detections (i) to obtain the abundance
estimate. For models that do not include covariates, p(z;) is equal for all 4, so this is equivalent
to summing the clusters and inflating that sum by dividing through by the corresponding
p(= p(2i)Vi).

Having obtained the abundance in the covered area, we can then scale-up to the study area:
A

a

N = NCa

where A is the area of the study region to which to extrapolate the abundance estimate and
a is the covered area. For line transects a = 2wL (twice the truncation distance multiplied
by the total length of transects surveyed, L) and for points a = mw?T (where mw? is the area
of a single surveyed circle and 7" is the sum of the number of visits to the sampled points).

We can use the Horvitz-Thompson-like estimator to calculate the “average” detectability for
models which include covariates. We can consider what single detectability value would give
the estimated Ng and therefore calculate:

P, =n/Nc.
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This can be a useful summary statistic, giving us an idea of how detectable our n observed
animals would have to be to estimate the same N if there were no observed covariates. It
can also be compared to similar estimates in mark-recapture studies. P, is included in the
summary output and the table produced by summarize_ds_models.

Stratification

We may wish to calculate abundance estimates for some sub-regions of the study region, we
call these areas strata and can be defined at the design stage or post hoc. Stratification
can be used to increase the precision of estimates if we know a priori that density varies
between different parts of the study area. For example, strata may be defined by habitat
types which may be of interest for biological or management reasons. To calculate estimates
for a given stratification each observation must occur in a stratum which must be labeled with
a Region.Label and have a corresponding Area. Finally, we must also know the stratum in
which each observation occurs.

As an example, the minke whale data contain two strata: North and South relating to strata
further away from and nearer to the Antarctic ice edge, respectively.

5.2. Variance

We take an intuitive approach to uncertainty estimation, for a full derivation consult Marques
and Buckland (2003). Uncertainty in N comes from two sources:

1. Detection function: Uncertainty in parameter (6) estimation.

2. Encounter rate: Sampling variability arising from differences in the number of observa-
tions per transect.

We can see this by looking at the Horvitz-Thompson-like estimation in (1) and consider the
terms which are random. These are: the detectability p(z;) (and hence the parameters of the
detection function it is derived from) and n, the number of observations.

Model parameter uncertainty can be addressed using standard maximum likelihood theory.
We can invert the Hessian matrix of the likelihood to obtain a variance-covariance matrix. We
can then pre- and post-multiply this by the derivatives of N¢ with respect to the parameters
of the detection function

Varodel (No) = (W’>T (HO)) o,

where the partial derivatives of N¢ are evaluated at the MLE (9) and H is the first partial Hes-
sian (outer product of first derivatives of the log likelihood) for numerical stability (Buckland
et al. 2001, p 62). Note that although we calculate uncertainty in N¢, we can scale-up to vari-
ance of N (by noting that N = %NC and therefore @modcl (N) = (%)Q\Emodol (NC)),
at least in the case where covariates are independent between strata (see e.g., Oedekoven,
Buckland, Mackenzie, Evans, and Burger 2013).

Encounter rate is the number of objects per unit transect (rather than just n). When covari-
ates are not included in the detection function we can define the encounter rate as n/L for
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line transects (where L is the total line length) or n/T for point transects (where T' is the
total number of visits summed over all points). When covariates are included in the detection
function, it is recommended that we substitute the n in the encounter rate with the estimated
abundance N as this will take into account the effects of the covariates (Innes et al. 2002).

For line transects, by default, Distance uses a variation of the estimator “R2” from Fewster
et al. (2009) replacing number of observations per sample with the estimated abundance per
sample, thus taking into account cluster size if this is recorded (Innes et al. 2002; Marques
and Buckland 2003):

~ A 2
_ . K K Nor Ne
ncounter N = To/7- 1\ == )
Vare ter, R2 ( C) LQ(K _ 1) k;lk' < lk L

where [}, are the lengths of the K transects (such that L = Y% ;) and NACJC is the abundance
in the covered area for transect k. For point transects we use the estimator “P3” from Fewster
et al. (2009) but again replace n by N¢ in the encounter rate definition, to obtain the following
estimator:

K - A N2
— . 1
Varecomers (Ne) = e =y 2 1 (tk T ) |

where tj, is the number of visits to point k and T = YK ¢, (the total number of visits to
all points is the sum of the visits to each point). Again, it is straightforward to calculate the
encounter rate variance for N from the encounter rate variance for Ng.

Other formulations for the encounter rate variance are discussed in detail in Fewster et al.
(2009). Distance implements all of the estimators of encounter rate variance given in that
article. The varn manual page gives further advice and technical detail on encounter rate
variance. For example for systematic survey designs, estimators S1, S2 and O1, O2 and O3
will typically provide smaller estimates of the variance.

We combine these two variances by noting that squared coefficients of variation (approxi-
mately) add (often referred to as “the delta method”; Seber 1982).

5.3. Estimating abundance and variance in R

Returning to the minke whale data, we have the necessary information to calculate A and «a
above, so we can estimate abundance and its variance. When we supply data to ds in the
“flatfile” format given above, ds will automatically calculate abundance estimates based on
the survey information in the data.

Having already fitted a model to the minke whale data, we can see the results of the abundance
estimation by viewing the model summary:

R> summary (minke_hn)
Summary for distance analysis
Number of observations : 88

Distance range : 0 - 1.5

Model : Half-normal key function

19
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AIC : 46.87216

Detection function parameters
Scale coefficient(s):

estimate se
(Intercept) -0.3411766 0.1070304

Estimate SE Cv

Average p 0.5733038 0.04980421 0.08687229
N in covered region 153.4962706 17.08959835 0.11133559
Summary statistics:

Region Area CoveredArea Effort n k ER
1 North 630582 4075.14 1358.38 49 12 0.03607238 O.
2 South 84734 1453.23 484.41 39 13 0.08051031 O.
3 Total 715316 5528.37 1842.79 88 25 0.04775368 0.
Abundance:

Label Estimate se cv 1cl ucl

1 North 13225.44 4966.7495 0.3755450 6005.590 29124.93
2 South 3966.46 955.9616 0.2410113 2395.606 6567.36
3 Total 17191.90 5135.5862 0.2987212 9183.475 32184.07

Density:
Label Estimate se cv

1 North 0.02097339 0.007876453 0.3755450 0.009523884 O.
2 South 0.04681073 0.011281913 0.2410113 0.028272077 O.
3 Total 0.02403400 0.007179465 0.2987212 0.012838347 O.

1cl

se.ER
01317937
01809954
01129627

df
12.27398
15.80275
14.00459

ucl
04618738
07750560
04499280

cv.ER
0.3653591
0.2248102
0.2365529

daf
12.27398
15.80275
14.00459

This prints a rather large amount of information: first the detection function summary, then

three tables:

1. Summary statistics: giving the areas, covered areas, effort, number of observations,
number of transects, encounter rate, its standard error and coefficient of variation for

each stratum.

2. Abundance: giving estimates, standard errors, coefficients of variation, lower and upper
confidence intervals and finally the degrees of freedom for each stratum’s abundance

estimate.

3. Density: lists the same statistics as Abundance but for a density estimate.

In each table the bottom row gives a total for the whole study area.

The summary can be more concisely expressed by extracting information from the summary
object. This object is a list of data.frames, so we can use the kable function from knitr
to create summary tables of abundance estimates and measures of precision, such as Table 3.

We prepare the data.frame as follows before using

kable:
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Stratum N se(N) CV(N)
North 13225.44  4966.750 0.376
South 3966.46  955.962 0.241
Total 17191.90 5135.586 0.299

Table 3: Summary of abundance estimation for the half-normal model for the minke whale
data.

R> minke_table <- summary(minke_hn)$dht$individuals$N

R> minke_table$lcl <- minke_table$ucl <- minke_table$df <- NULL
R> colnames(minke table) <- c("Stratum", "$\\hat{N}$",

+ "$\\text{se}(\\hat{N}$)", "$\\text{CV}(\\hat{N}$)")

6. Extensions

Distance sampling has been applied in a wide variety of situations. Objects being detected
need not be animals; plants (Buckland, Borchers, Johnston, Henrys, and Marques 2007),
beer cans (Otto and Pollock 1990), elephant dung (Nchanji and Plumptre 2001) and bricks
on a lake bottom (Bergstedt and Anderson 1990) have been subjects of distance sampling
investigations. The method of detection need not be visual sightings. Detections of objects can
be through auditory as well as visual means (Marques et al. 2013). Songs of birds (Buckland
2006) and whale vocalizations (Borchers, Pike, Gunnlaugsson, and Vikingsson 2009) are just
two examples. Blows made by whales are examples of processes that can be modelled using
distance sampling. Songs and blows are indirect sampling methods producing estimates of
cue density. Cue densities can be converted to animal densities with additional data needed
to estimate the rate at which cues are produced and the rate at which they disappear. These
are but a few examples of the applications to which distance sampling has been applied (an
incomplete list of references is given at http://distancesampling.org/dbib.html).

The features of Distance are deliberately limited to provide a simplified interface for users.
For more complex analyses of distance sampling data, we provide additional packages for
modelling in R.

We noted at the start of the article that Distance is a simple-to-use wrapper around the
package mrds. Additional features available in mrds include models that relax the assumption
that detection is certain at zero distance from the transect (by including data from additional
observers). This is done using mark-recapture type methods which require additional survey
methodology, known as double observer surveys or mark-recapture distance sampling (see
Burt et al. 2014, for an introduction).

Distance can provide us with estimates of abundance or density for each strata as a whole
but tells us nothing about the distribution of animals within strata. One option is to divide
the study area into smaller and smaller strata to try to detect patterns in spatial distribution,
however, a more rigorous approach is to build a spatial model. Such models incorporate
spatially-referenced environmental data (for example derived from GIS products). Distance
interfaces with one such package used to perform this type of analysis: dsm (Miller, Rexstad,
Burt, Bravington, and Hedley 2019). So-called “density surface modelling” uses the gener-
alized additive model framework (e.g. Wood 2006) to build models of abundance (adjusting
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counts for imperfect detectability) as a function of environmental covariates, as part of a two
stage model (Hedley and Buckland 2004; Miller, Burt, Rexstad, and Thomas 2013).

Uncertainty in measured covariates (e.g., cluster size) and model uncertainty (when two mod-
els have similar fit but substantially different estimates) can be incorporated using the multi-
analysis distance sampling package mads (Marshall 2017). In addition, mads can also incorpo-
rate sightings with unknown species identification. This is done by estimating the abundance
of these unidentified sightings and pro-rating them to the known species (Gerrodette and
Forcada 2005).

As mentioned above, survey design is critical to ensuring that resulting distance sampling
data can be reliably analyzed. DSsim allows users to test out different designs in their study
region and tailor population attributes to reflect the species they are working with. DSsim
(Marshall 2019) allows users to more easily identify challenges unique to their study and select
a survey design which is more likely to yield accurate and precise estimates.

Distance for Windows has many users (over 50,000 downloads since 2002) and they may be
overwhelmed by the prospect of switching existing analyses to R. For that reason we have
created the readdst (Miller 2018) package to interface with projects created by Distance for
Windows. The package can take analyses created using the CDS, MCDS and MRDS engines
in Distance for Windows, extract the data and create equivalent models in R. readdst can
also run these analyses and test the resulting statistics (for example, N or ﬁa) calculated
in R against those calculated by Distance for Windows. We hope that readdst will provide
a useful transition to R for interested users. readdst is currently available on GitHub at
https://github.com/distancedevelopment/readdst.

7. Conclusion

We have given an introduction as to how to perform a distance sampling analysis in R. We
have covered the possible models for detectability, model checking and selection and finally
abundance and variance estimation.

In combination with tools such as knitr and rmarkdown (Xie, Allaire, and Grolemund 2018),
the helper functions in Distance provide a useful set of tools to perform reproducible analyses
of wildlife abundance for both managers and ecologists. We also direct readers’ attention
to DsShiny (Laake 2014), a package that builds on shiny (Chang, Cheng, Allaire, Xie, and
McPherson 2019) and mrds to allow users to build and fit models in a graphical interface,
with output to RMarkdown.

R and its extension packages provide many tools exploratory data analysis that can be useful
for a distance sampling analysis. We hope that this paper provides useful examples for
those wishing to pursue distance sampling in R. More information on distance sampling
can be found at http://distancesampling.org and a mailing list is maintained at https:
//groups.google.com/forum/#!forum/distance-sampling.

We note that there are other packages available for performing distance sampling analyses in
R but believe that Distance is the most flexible and feature-complete, and provides pathways
to a range of more complicated analyses. Appendix A gives a feature comparison between
Distance and other R packages for analysis of distance sampling data.
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A. Feature comparison

There are four packages available for analysis of distance sampling data in R that we are aware
of. All are available on CRAN. On top of Distance and mrds (Laake et al. 2018) described
above, they are Rdistance (McDonald et al. 2019) and unmarked (Fiske and Chandler 2011).

Table 4 provides a feature comparison of these packages.

Feature Distance Rdistance unmarked mrds
Line transects X X X X
Point transets X X X
Interval (binned) distances X X X
Exact distances X X X
Continuous individual level covariates X X
Factor individual level covariates X X X
Transect level covariates X X X
Objects in clusters X X X X
Left truncation X X X
Half-normal key X X X X
Hazard-rate key X X X X
Uniform key X X X X
Gamma key X X
Negative exponential key X
Adjustment terms X X X
AIC adjustment selection X X

Monotonicity constraints X X
Availability bias model X
Perception bias model X
Abundance estimation X X X X
Density estimation X X X X
User-defined likelihood functions X

Table 4: Feature comparison of the available packages to perform distance sampling analyses.

B. Abundance estimation

Distance and mrds models can be used as part of a density surface model using dsm, which
allows abundance to be modelled as a function of spatially varying covariates (such as location,

sea depth, altitude etc). See Miller et al. (2013) for more information.
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unmarked also allows abundance to vary according to covariates, via the abundance part of

the likelihood. See Fiske and Chandler (2011) for more information on the package and Royle,
Dawson, and Bates (2004) for more information on methodology.

Resulting Rdistance models can be use in combination with R modelling functions such as 1m,
glm etc to build abundance estimates which vary according to covariates. More information

is available on the project’s wiki.
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