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Abstract: Mastering the sound propagation law of low-frequency signals in the Arctic is a major
frontier basic research demand to improve the level of detection, communication, and navigation
technology. It is of practical significance for long-distance sound propagation and underwater
target detection in the Arctic Ocean. Therefore, how to establish an effective model to study the
characteristics of the acoustic field in the Arctic area has always been a hot topic in polar acoustic
research. Aimed at solving this problem, a mathematical polar acoustic field model with an elastic
seafloor is developed based on a range-dependent elastic parabolic equation theory. Moreover, this
method is applied to study the characteristics of polar sound propagation for the first attempt. The
validity and effectiveness of the method and model are verified by the elastic normal mode method.
Simultaneously, the propagation characteristics of low-frequency signals are studied in a polar sound
field from three aspects, which are seafloor parameters, sea depth, and ice thickness. The results
show that the elastic parabolic equation method can be well utilized to the Arctic low-frequency
acoustic field. The analysis of the influence factors of the polar sound field reveals the laws of sound
transmission loss of low-frequency signals, which is of great significance to provide information
prediction for underwater submarine target detection and target recognition.

Keywords: low frequency; polar shallow water environment; elastic parabolic equation

1. Introduction

In recent years, global warming has led to a decrease in the area of Arctic ice, which
has caused the world’s marine powers to pay unprecedented attention to the Arctic [1].
In order to meet the needs of energy and minerals, fishery resources and the ecological
environment, tourism and transportation, climate change and national defense security in
the Arctic, countries think highly of the research on the sound propagation characteristics
of low-frequency signals in the Arctic. Therefore, scholars have studied the models and
modeling methods of the Arctic region. Burke [2] firstly considered the ice interface with
ridge distribution as an infinite semi elliptical cylinder, which was randomly distributed
on a rigid or free interface and established the Burke–Twersky (BT) model to describe the
sound field under the ice. Diachok [3] analyzed the relationship between the reflection
loss and the size, number, and distribution density of ice ridges at different frequencies
on the basis of the BT model, and further studied the propagation loss under the ice using
the ray theory. Wolf [4] proposed an improved BT model, and the solution is consistent
with the experimental results from the polar region in the low-frequency range. In order to
study the polar sound field with the more realistic polar model, the perturbation theory
has been used to calculate the scattering coefficients of elastic modes [5]. Kuperman [6,7]
used the wave number integration method and the perturbation theory to derive the low-
frequency reflection loss at the interface of the elastic medium, and he calculated the sound
propagation loss under the Arctic ice. Jon [8] applied the elastic parabolic equation to polar
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acoustic for the first time and verified the accuracy of the method. Scott [9] developed a
full-field perturbation method to estimate the narrow-band long-range reflection caused
by the roughness of the ice water interface. Anatoliy [10] compared the reverberation of
the fluid model ice with that of elastic model ice for an upward refracted acoustic velocity
profile, and he further considered the reverberation of the elastic seafloor with a nearly
fluid mud layer. Previous research mainly focused on ice modeling and analysis methods
to study whether they are suitable for polar acoustics.

Different from research studies above, this paper further considers the influence of
some specific factors on the sound propagation characteristics of polar sound field from the
perspectives of the elastic seafloor and the low-frequency signal. Section 2 details the elastic
parabolic equation method and the polar acoustic numerical model of ice–water–seafloor.
The ice layer and the seafloor are regarded as elastic media in this model [11,12]. The
accuracy of the polar sound field model is verified in Section 3. Section 4 focuses on the
sound propagation characteristics of the traditional polar sound field model from three
aspects: ice thickness, seawater depth, and seafloor medium parameters, and it reveals the
propagation law of low-frequency signals in a polar shallow water sound field.

2. Elastic Model

Based on the elastic parabolic equation, the polar sound field model proposed in the
paper is shown in Figure 1.
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Figure 1. Schematic diagram of polar sound field model.

It is assumed that the ice layer is the elastic layer above the surface of a homogeneous
fluid layer and the sound field has cylindrical symmetry in the near range of the sound
source. The impulse function is used to replace the time-harmonic point source for under-
water sound propagation problems. The z-axis is vertically downward, which represents
the depth of the ocean, and range r represents the horizontal distance from the sound
source. The ice–air interface is at z = 0, the top of the ice layer is located at z = H1, where it
is also the ice–water interface. The seafloor layer is at z = H2. The point sound source is in
the fluid layer at range r = 0 and depth z = zs.

2.1. Elastic Parabolic Equation Method with Ice Covers

The parabolic equation can deal with the large-angle problem by approximating the
far field and ignoring the inward propagating wave. The accuracy and stability of the
solution are greatly improved by the split step method, and the improved self-starter can
deal with various boundary conditions effectively.
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Based on the relationship between stress and displacement, the elastic parabolic
equation is derived from the equation of motion for elastic medium, which are written as
the (ur,w) formulation of elasticity, for ur = ∂u/∂r [13],

(λ + 2µ) ∂2ur
∂r2 + ∂

∂z

(
µ ∂ur

∂z

)
+ ρω2ur + (λ + µ) ∂3w

∂r2∂z +
∂µ
∂z

∂2w
∂r2 = 0

(1)

µ ∂2w
∂r2 + ∂

∂z

(
(λ + 2µ) ∂w

∂z

)
+ ρω2w + (λ + µ) ∂ur

∂z + ∂λ
∂z ur = 0

(2)

where ur is the derivative of the horizontal displacement with respect to range and w is the
vertical displacement. ω is a time-harmonic point source of angular frequency. λ and µ are
Lame elastic parameters and defined as,

λ = ρ
(

c2
p − 2c2

s

)
(3)

µ = ρc2
s (4)

where cp is a compressional wave, cs is a shear wave, and ρ is medium density.
Through the derivation and transformation of Equations (1) and (2) in the form

of a matrix operator, the standard form of a elastic parabolic equation is written. It is
transformed into the form of inward and outward propagation, ignoring the outward
propagation component. The solution of the equation is given by the differential:(

ur
w

)∣∣∣∣
r+∆r

= eik0∆r
√

I+X
(

ur
w

)∣∣∣∣
r

(5)

with
X = k0

−2
(

L−1M− k0
2 I
)

(6)

where ∆r is a step in the range, I is the identity matrix, k0 is the reference wavenumber, and
L and M are a matrix containing medium parameters and depth, respectively [14].

By applying the split-step Pade approximation for Equation (3), it is obtained that(
ur
w

)∣∣∣∣
r+∆r

= eik0∆r
n

∏
j=1

1 + αj,n

1 + β j.n

(
ur
w

)∣∣∣∣
r

(7)

where αj,n and βj,n should meet the requirements of stability, convergence, and accuracy.
The discretization of depth operator X is based on the Galerkin method [15]. After

discretization, a large sparse banded matrix can be obtained, which can be solved by the
block pursuit method based on Gaussian principal elimination. For the storage of the
matrix, according to the characteristics of only six elements in each row, six groups of data
can be used to store the coefficient matrix. Applying the initial condition at r = 0 by using
the self-starter [16] and the sparse matrix, the solution can be obtained by solving step
by step.

After obtaining the whole sound field, the sound propagation characteristics are
expressed by the sound pressure transmission loss:

TL = −20 ∗ log
P
P0

(8)

where P represents the sound pressure amplitude obtained by simulation, and P0 represents
the sound pressure at the sound source.
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2.2. Boundary Condition

In this model, the ice layer and seafloor are regarded as an elastic medium. When the
sound wave enters the elastic medium, it will produce two kinds of waves: compressional
wave and shear wave [17]. In certain conditions, three complex interface waves may be
excited at the interface [18], such as the Rayleigh wave (air–elastic interface) [19] and
Scholte wave (fluid–elastic interface) [20]. Therefore, the boundary conditions of the elastic
parabolic equation are considered from the above two aspects.

Generally, the air–elastic interface is regarded as the pressure release interface, which
meets the zero traction condition, it is expressed as

λ1∆1 = 0 (9)

λ2ur2 + (λ2 + 2µ2)
∂w2

∂z
= 0 (10)

∂

∂z
(λ2ur2) +

∂

∂z
(λ2 + 2µ2)

∂w2

∂z
+ ρ2ω2w2 = 0 (11)

where subscript 1 and subscript 2 represent the air layer and the elastic layer, respectively.
The boundary conditions of the fluid–elastic interface should satisfy that the vertical

stress is continuous, the displacement is continuous, and the tangential stress is zero [21],
which is written as

∂

∂z
(λ2∆2) + ρ2ω2w2 = 0 (12)

λ2∆2 = λ3∆3 + 2µ3
∂w3

∂z
(13)

∂

∂z
(λ2ur2) +

∂

∂z
(λ2 + 2µ2)

∂w2

∂z
+ ρ2ω2w2 = 0 (14)

where the subscript 3 represents the fluid layer.
In the discrete process of parabolic equation, the interface conditions may be handled

by introducing artificial grid points; we placed the interface midway between real and
artificial grid points in both layers [22]. The interface condition is discretized by the central
difference method and substituted into the discrete parabolic equation. The artificial
quantity can be eliminated at the interface.

3. Model Validation

In this part, the elastic normal mode [23] is utilized to demonstrate the correctness of
the ice–fluid–seabed model. This method is different from other methods such as ray theory,
which is advantageous for studying the sound propagation characteristics of low-frequency
sound signals.

Medium parameters about the ice-cover shallow water model proposed in this paper
are shown in Table 1. For the model of elastic normal mode and elastic parabolic equation
with the same parameters, the sound field characteristics are analyzed respectively. When
the frequency of the sound source is 50 Hz, the comparison between the transmission
loss of the elastic normal mode model and elastic parabolic equation model are shown in
Figure 2.

It can be seen from Figure 2 that two curves signifying the solutions of elastic parabolic
solution and elastic normal mode coincide with each other. Moreover, under the same
medium parameters, the solution is in agreement with that of Collis [8]. Through these
verifications, this model is correct, and the method of an elastic parabolic equation can be
used in a polar sound field model reasonably.
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Table 1. Model physical parameters.

Layer Type Parameter Value

Ice layer

Ice thickness (m) 3
Ice density (g/cm3) 0.9

Compressional speed ice (m/s) 3500
Shear speed ice (m/s) 1800

Compressional attenuation ice (dB/λ) 0.3
Shear attenuation ice (dB/λ) 1.0

Fluid layer
Fluid depth (m) 100

Fluid density (g/cm3) 1.0
Compressional speed fluid (m/s) 1482

Seafloor layer
Seafloor density (g/cm3) 2.2

Compressional attenuation seafloor (dB/λ) 0.76
Shear attenuation seafloor (dB/λ) 1.05
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4. Parameter Analysis

On the basis of the proper polar sound field model, exploration is made about the
sound propagation characteristics of low-frequency signals in the polar environment. This
section considers the effect of acoustic propagation loss on low-frequency signals in a polar
shallow water acoustic field environment under different parameters.

4.1. The Influence of Ice Thickness

The acoustic parameters of an ice layer include ice layer density, thickness, and
compressional wave and shear wave velocities. Considering that ice density has little effect
on sound propagation, especially on long-distance sound propagation, it is neglected. The
influence of ice thickness on sound field distribution is mostly considered here. Since the
ice thickness is continuous fluctuation, it is necessary to study the influence of different ice
thicknesses on sound propagation. The frequency of the sound source is 50 Hz, the depth
of the sound source is 30 m, the depth of the sound receiver is 30 m, the seawater depth is
100 m, and the thickness of the ice layers are 5 m, 10 m, 15 m, and 20 m respectively. The
results of numerical analysis are shown in Figures 3 and 4.
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Figures 3 and 4 show the transmission loss curves and contour plots at different ice
thicknesses, respectively. The results show that when the distance between the sound
source location and the ice layer is constant, the propagation loss increases with the
increase of ice thickness. This is primarily because the thicker the ice layer is, the more the
energy of compression wave in seawater penetrates into the seafloor, resulting in greater
propagation loss.

4.2. The Influence of Seafloor Parameters

The seabed environment is complex and changeable, so the influence of the seafloor
medium parameters is considered on the sound propagation characteristics. The character-
istics of seafloor parameters are chiefly manifested in compressional wave velocity and
shear wave velocity. The sound source frequency is 50 Hz, the sound source and the sound
receiver are at the depth of 30 m and 50 m, respectively, the thickness of the ice is 5 m, the
following groups are selected for the sound velocity of a compressional wave and shear
wave: one is that the compressional wave velocity and shear wave velocity are 3800 m/s
and 1800 m/s, respectively, and the other is that the compressional wave velocity and shear
wave velocity are 2400 m/s and 1200 m/s, respectively.

It can be seen from Figure 5 that the propagation loss of the first seafloor is lower than
that of the other seafloor, and the attenuation laws of the two lines are different. The sound
field environment is different under different medium parameters. Under the first seabed
(compressional wave velocity and shear wave velocity are 3800 m/s and 1800 m/s), a
Scholte surface wave is excited, and there is a waveguide normal wave in the water. Under
the other seabed (compressional wave velocity and shear wave velocity are 2400 m/s and
1200 m/s), no Scholte surface wave is excited, and there is only an attenuated normal wave
in the water. Obviously, different dielectric parameters can lead to the change of sound
field, which leads to different attenuation modes. With the decrease of shear wave velocity,
the seabed medium behaves as the fluid medium, and the ability of the absorbing surface
wave energy decreases. When the shear wave velocity is 0, it is equivalent to the infinite
deep seafloor, and the propagation loss reaches the maximum.
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4.3. The Influence of Sea Water Depth

The parameters of the sea water depth sound field are the same as before, only
changing the sea water depth h, and the sound source is in the middle of the sea water.
Figure 6 shows the propagation loss and contour plots when the sea water depth is 10 m,
50 m, 100 m, and 150 m, respectively.
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It can be seen from Figure 6 that when the water depth is relatively shallow (10 m), a
large part of the compressional wave energy in the seawater penetrates into the seafloor
and ice layer at a short distance, and only a small part is converted into Scholte surface
wave propagation. Other conditions remain unchanged. With the increase of seawater
depth, the relative distance between the sound source and the ice layer and the seafloor
increases, and the number of collisions between the sound line and the upper interface
decreases, which is conducive to the long-distance transmission of sound.

5. Conclusions

This paper firstly applies the elastic parabolic equation to study the acoustic propa-
gation characteristics and influencing factors of low-frequency signals in a polar shallow
water environment. Combining the elastic parabolic equation method and boundary con-
ditions, a numerical model of a polar acoustic field is established. The ice layer and sea
bottom of the model is regarded as an elastic medium, and its effect is considered. The
validity and accuracy of the elastic parabolic equation method are verified by the elastic
normal mode method. The results show that the method can be well applied to the study
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of low-frequency signals in polar shallow water. At the same time, the influence factors of
low-frequency sound propagation in a polar environment are analyzed, which reveals the
influence of several key parameters on the propagation characteristics of sound pressure in
water. With the decrease of distance between the sound source and ice layer, the value of
the propagation loss is larger. A thicker ice layer and smaller compressional wave velocity
of the seafloor also cause larger propagation loss. In these cases, it is not conducive to
the long-distance transmission of acoustic signals. This research has important value in
the field of underwater acoustic scientific research and engineering applications. At the
same time, understanding the Arctic environmental sound field can be helpful to improve
the environmental adaptability of ship sonar equipment and meet the research needs of
detection, communication, and navigation technology. The polar sound field environment
simulated in this paper is parallel to the seabed. More complex marine environments such
as tilt are not discussed, and the characteristics of sound vector parameters need to be
further studied.

Author Contributions: Conceptualization, S.L. (Shande Li) and S.Y.; methodology, S.L. (Shande
Li) and S.Y.; software, S.Y.; validation, S.Y. and S.L. (Shaowei Liu); formal analysis, S.Y. and J.W.;
investigation, S.L. (Shande Li) and S.Y.; resources, S.L. (Shaowei Liu); data curation, S.Y.; writing—
original draft preparation, S.Y.; writing—review and editing, S.L. (Shande Li); visualization, S.Y. and
J.W.; supervision, Q.H., S.L. (Shande Li) and Z.Z.; project administration, J.W.; funding acquisition,
S.L. (Shande Li) and Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 51575201 and the Natural Science Foundation of Hubei Province under Grant 2020CFB510.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This work was supported by the National Natural Science Foundation of
China under Grant 51575201 and the Natural Science Foundation of Hubei Province under Grant
2020CFB510. The useful contribution and discussions from project partners are also acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yadav, J.; Kumar, A.; Mohan, R. Dramatic decline of Arctic sea ice linked to global warming. Nat. Hazards J. Int. Soc. Prev. Mitig.

Nat. Hazards 2020, 103, 2617–2621. [CrossRef]
2. Burke, J.E. Scattering and reflection by elliptically striated surfaces. J. Acoust. Soc. Am. 1966, 40, 883–895. [CrossRef]
3. Diachok, O.I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 1976, 59, 1110–1120.

[CrossRef]
4. Wolf, J.W. Very-low-frequency under-ice reflectivity. J. Acoust. Soc. Am. 1992, 93, 1329–1334. [CrossRef]
5. Kuperman, W.A. Self-consistent perturbation approach to rough surface scattering in stratified elastic media. J. Acoust. Soc. Am.

1989, 86, 1511–1522. [CrossRef]
6. Kuperman, W.A. Rough surface elastic wave scattering in a horizontally stratified ocean. J. Acoust. Soc. Am. 1986, 79, 1767–1777.

[CrossRef]
7. Kuperman, W.A. Coherent component of specular reflection and transmission at a randomly rough two-fluid interface. J. Acoust.

Soc. Am. 1975, 58, 365–370. [CrossRef]
8. Collis, J.M.; Frank, S.D.; Metzler, A.M. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in

underwater environments with ice covers. J. Acoust. Soc. Am. 2016, 139, 2672–2682. [CrossRef]
9. Frank, S.D.; Ivakin, A.N. Estimating the influence of ice thickness and elasticity on long-range narrow-band reverberation in an

Arctic environment. Meet. Acoust. Soc. Am. 2017, 30, 070003.
10. Frank, S.D.; Ivakin, A.N. Application of elastic parabolic equation solutions to calculation of acoustic reverberation in ice-covered

underwater environments. 178th Meet. Acoust. Soc. Am. 2019, 39, 022002.
11. De Basabe, J.D.; Sen, M.K. A comparison of finite-difference and spectral-element methods for elastic wave propagation in media

with a fluid-solid interface. Geophys. J. Int. 2015, 200, 278–298. [CrossRef]
12. Shi, R.; Sun, X. Numerical simulation of elastic stress wave refraction at air-solid interfaces. J. Beijing Inst. Technol. 2020, 29,

209–221.
13. Jerzak, W.; Siegmann, W.L.; Collins, M.D. Modeling Rayleigh and Stoneley waves and other interface and boundary effects with

the parabolic equation. J. Acoust. Soc. Am. 2005, 117, 3497–3503. [CrossRef] [PubMed]

http://doi.org/10.1007/s11069-020-04064-y
http://doi.org/10.1121/1.1910161
http://doi.org/10.1121/1.380965
http://doi.org/10.1121/1.405418
http://doi.org/10.1121/1.398712
http://doi.org/10.1121/1.393238
http://doi.org/10.1121/1.380680
http://doi.org/10.1121/1.4946991
http://doi.org/10.1093/gji/ggu389
http://doi.org/10.1121/1.1893245
http://www.ncbi.nlm.nih.gov/pubmed/16018454


Appl. Sci. 2021, 11, 7815 10 of 10

14. Outing, D.A. Parabolic Equation Methods for Range Dependent Layered Elastic Media. Ph.D. Thesis, Rensselaer Polytechnic
Institute, Troy, NY, USA, 2004.

15. Collins, M.D. A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom. J. Acoust. Soc. Am.
1989, 86, 1459–1464. [CrossRef]

16. Collins, M.D. A self-starter for the parabolic equation method. J. Acoust. Soc. Am. 1992, 92, 2069–2074. [CrossRef]
17. Collins, M.D. Higher-order Padé approximations for accurate and stable elastic parabolic equations with application to interface

wave propagation. J. Acoust. Soc. Am. 1990, 89, 1050–1057. [CrossRef]
18. Collis, J.M. New capabilities for parabolic equations in elastic media. Rensselaer Polytech. Inst. 2006, 67, 5105–5203.
19. Zhao, Y.; Zhou, X.; Huang, G. Non-reciprocal Rayleigh waves in elastic gyroscopic medium. J. Mech. Phys. Solids 2020, 143, 104065.

[CrossRef]
20. Johansen, T.A.; Ruud, B.O. Characterization of seabed properties from Scholte waves acquired on floating ice on shallow water.

Near Surf. Geophys. 2020, 18, 19–59. [CrossRef]
21. Greene, R.R. A high-angle one-way wave equation for seismic wave propagation along rough and sloping interfaces. J. Acoust.

Soc. Am. 1985, 77, 1991–1998. [CrossRef]
22. Collins, M.D. Treatment of ice cover and other thin elastic layers with the parabolic equation method. J. Acoust. Soc. Am. 2015,

137, 1557–1563. [CrossRef] [PubMed]
23. Schneiderwind, J.D.; Collis, J.M.; Simpson, H.J. Elastic Pekeris waveguide normal mode solution comparisons against laboratory

data. J. Acoust. Soc. Am. 2012, 132, 182–188. [CrossRef] [PubMed]

http://doi.org/10.1121/1.398706
http://doi.org/10.1121/1.405258
http://doi.org/10.1121/1.400646
http://doi.org/10.1016/j.jmps.2020.104065
http://doi.org/10.1002/nsg.12082
http://doi.org/10.1121/1.391770
http://doi.org/10.1121/1.4908220
http://www.ncbi.nlm.nih.gov/pubmed/25786966
http://doi.org/10.1121/1.4740227
http://www.ncbi.nlm.nih.gov/pubmed/22979830

	Introduction 
	Elastic Model 
	Elastic Parabolic Equation Method with Ice Covers 
	Boundary Condition 

	Model Validation 
	Parameter Analysis 
	The Influence of Ice Thickness 
	The Influence of Seafloor Parameters 
	The Influence of Sea Water Depth 

	Conclusions 
	References

