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Abstract: Warm current has a strong impact on the melting of sea ice, so clarifying the current features
plays a very important role in the Arctic sea ice coverage forecasting study field. Currently, Arctic
acoustic tomography is the only feasible method for the large-range current measurement under
the Arctic sea ice. Furthermore, affected by the high latitudes Coriolis force, small-scale variability
greatly affects the accuracy of Arctic acoustic tomography. However, small-scale variability could not
be measured by empirical parameters and resolved by Regularized Least Squares (RLS) in the inverse
problem of Arctic acoustic tomography. In this paper, the convolutional neural network (CNN) is
proposed to enhance the prediction accuracy in the Arctic, and especially, Gaussian noise is added to
reflect the disturbance of the Arctic environment. First, we use the finite element method to build the
background ocean model. Then, the deep learning CNN method constructs the non-linear mapping
relationship between the acoustic data and the corresponding flow velocity. Finally, the simulation
result shows that the deep learning convolutional neural network method being applied to Arctic
acoustic tomography could achieve 45.87% accurate improvement than the common RLS method in
the current inversion.

Keywords: ocean acoustic tomography; velocity field; RLS; convolutional neural network; acoustic
inverse problem

1. Introduction

Computer models suggest that Arctic sea ice is a core climate indicator [1]. According
to statistics, in September 2020, the Arctic sea ice extent fell below 4 million square kilo-
meters for the second time, reaching the 2020 minimum. The rapid reduction in Arctic
sea ice has accelerated climate warming, affecting the Arctic region and even the global
ecosystem and human activities. The subglacial warm current has a strong influence [2]
on the distribution and melting of sea ice. Therefore, understanding the flow velocity
under the Arctic sea ice is of great significance for understanding the ice–sea–air interaction
process, especially for forecasting the Arctic climate and environment.

Currently, limited by the large area of Arctic sea ice, sub-ice acoustic tomography [3]
is the only method that can measure the flow field characteristics of the Arctic sea in a large
range. In 2000, Skarsoulis [4] introduced the method of matched peak (MPT) inversion
to realize the automatic analysis of propagation time values by utilizing the linearization
relationship between sound velocity and arrival time. Based on the ray group method,
Taniguchi et al. used display solution and regularization inversion [5] to estimate the
velocity and verified that a smoother solution could be obtained through regularization.
Through least square fitting, harmonic analysis (HA) can be used to determine the ampli-
tude and phase delay of each tidal component, but the least square method will overfit the
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non-tidal component and is not suitable for the analysis of non-stationary data [6], so it is
difficult to predict turbulent flows. Traditional acoustic tomography algorithm models are
often applied in open seas. To improve the accuracy of the current measurement, the model
needs to be uniformly linearized during calculation. However, in high-latitude Arctic
regions, small-scale ocean phenomena such as internal waves and turbulence affected by
Coriolis force [7,8] cause the uneven ocean environment. The flow measurement interfer-
ence caused by this inhomogeneity cannot be characterized by fixed parameters in sub-ice
acoustic tomography calculations. The use of conventional acoustic tomography least
squares and other methods tend to produce over-fitting or noise sensitivity problems [9],
and the robustness is very poor, which affects the accuracy of acoustic tomography.

Convolutional neural network (abbreviated as CNN) [10] is mainly realized by linear
convolution and nonlinear activation function, especially in the inversion of [11–13] nonlin-
ear problems. In this paper, we use the finite element method to construct the sound field
and marine environmental parameters. We aim to use CNN to directly analyze the original
acoustic data, establish the nonlinear mapping relationship between the acoustic data and
the corresponding flow velocity to realize the accurate inversion of the flow field under the
ice and solve the problem of the calculation accuracy of the acoustic tomography caused by
the nonlinear small-scale interference under the Arctic ice. The simulation results confirm
the feasibility and accuracy of this approach.

The main structure of this paper is as follows. First, in Section 2, basic methods and
formulas of arctic acoustic tomography are described. Secondly, in Section 3, the limitation
of regularized least squares to solve the problem of accuracy improvement is analyzed, and
the CNN method is proposed. Then, in Section 4, a simulation experiment based on the
finite element is performed, and the performance of the above two algorithms is compared.
Finally, conclusions are given in Section 5.

2. Acoustic Tomography Reciprocal Transmission and Flow Field Calculation
2.1. Acoustic Tomography Reciprocal Transmission

The reciprocal transmission process of acoustic tomography is to obtain marine envi-
ronmental parameters such as temperature currents in the observed sea area by measuring
the propagation time of acoustic signals. The acquisition of acoustic signal propagation
time depends on ocean acoustic tomography, and the main methods include ray travel time
tomography, normal wave phase tomography, peak matching tomography, and matching
field tomography. In this study, the most classic ray travel time [14] tomography is used to
construct a cost function by accurately measuring the propagation time of acoustic signals
placed between the observation stations around the observation sea area to realize the re-
construction of the flow field under the ice. The schematic diagram of acoustic tomography
reciprocal transmission flow measurement is shown in Figure 1.
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The basic theory of ray travel time tomography is ray acoustics, and the ray theory
is derived from the wave equation. Considering the propagation law of sound waves in
water, the wave equation is described as:

∇2 p− 1
c2

∂2 p
∂t2 = 0 (1)

The function ϕ(x, y, z) is introduced, and the formal solution p(x, y, z, t) =
A(x, y, z)ej[ωt−k0 ϕ(x,y,z)] of the equation is substituted into the wave equation. When
∇2 A

A � k2 (that is, under the condition of high frequency), the following can be obtained:

(∇ϕ)2 =
( c0

c

)2
= n2(x, y, z) (2)

∇·
(

A2∇ϕ
)
= 0 (3)

Equation (2) is called a function equation, and Equation (3) is an intensity equation,
which are two basic equations in ray acoustics. The function equation not only gives the
direction of the acoustic ray, but also provides the track and propagation time of the sound
line. According to the function equation:

n =

√
(∇ϕ)2 =

√(
∂ϕ

∂x

)2
+

(
∂ϕ

∂y

)2
+

(
∂ϕ

∂z

)2
(4)

So the direction cosine of the acoustic ray is expressed as follows:
d(ncosα)

ds = ∂n
∂x

d(ncosβ)
ds = ∂n

∂y
d(ncosγ)

ds = ∂n
∂z

(5)

For horizontally layered media, the speed of sound is only a function of the coordinate
z, so the right side of the equation above is 0, so it can be derived

cosα

c(z)
=

cosα0

c0
= C (6)

Among them, α is the angle between the sound propagation direction and the hor-
izontal direction, called the glancing angle; c(x, y, z) = c(z) is the speed of sound at the
corresponding depth z. α0 and c0 correspond to the value of the acoustic ray, and C is a
constant. Equation (6) is Snell’s law, which is the basic law of ray acoustics. When c(z) > c0,
α < α0; when c(z) < c0, α > α0, it is obvious that the sound line always bends to the place
where the speed of sound is low.

The intensity equation is used to express the strength of acoustic rays. To define the
sound intensity I = A2∇ϕ, Formula (3) is transformed into ∇·I = 0, and the volume
fraction ∇·I is transformed into area fraction by applying the Org-Gao theorem. If the
closed surface S is selected as the cross-sections S1 and S2 along the side of the acoustic ray
tube bundle and both ends of the tube bundle, the area along the side of the acoustic ray
tube bundle is zero. Suppose the sound intensity I is uniformly distributed along S1. and
S2, namely:

IS1 s1 = IS2 s2 = · · · = con (7)

Sound intensity is the sound energy per unit of time that passes through a unit area
perpendicular to the direction of sound wave propagation. Let W denote the radiated
sound power within a unit solid angle, the basic formula for calculating the sound intensity
of a single acoustic ray in ray acoustics:
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I(x, z) =
Wcosα0

r
∣∣∣ ∂x

∂α0

∣∣∣
α0

sinαz

(8)

where r is the horizontal distance from the launch to the receiving depth. According to the
expression of sound intensity I, the expression of sound pressure amplitude can be derived:

A(r, z) =

√√√√ Wcosα0

r
∣∣∣ ∂x

∂α0

∣∣∣
α0

sinαz

(9)

So the sound field of the ray is expressed as:

p(r, z) = A(r, z)e−jk0 ϕ(r,z) (10)

In the formula, ϕ(x, z) = xcosα0 +
∫ √

n2 − cos2α0dz + C is the deformation of the
equation under the premise of setting the boundary conditions, and C is the integral constant.

In particular, the acoustic rays that depart from the sound source and reach the receiver
through a certain path are collectively called Eigen acoustic rays, which are the key to the
application of ray acoustic theory to describe the sound field. Define Q = cosα0

c(z0)
= cosαz

c(z) as
the acoustic ray parameter, then along the Eigen acoustic ray direction:

d2z
dx2 =

Q
cos3αz

·dc(z)
dz

=
1

Q2c3(z)
·dc(z)

dz
(11)

We use the Runge–Kutta method to solve this differential equation. According to the
definition of eigenline, the solution z(α0, x) should satisfy:

z(α0, xr) = zr (12)

By changing the initial glancing angle α0, using the Newton iteration method to search
for and determine the Eigen acoustic rays through the set accuracy range and, then, obtain
the acoustic ray propagation time in the moving medium:

t =
∫ l

0

ds
c(z) + u(z)/cosθ(z)

(13)

In the working model of reciprocal transmission, assuming that A and B are the
stations of two acoustic signals, the two-way propagation time of the i-th acoustic line can
be expressed as:

t+ =
∫ l+

0

ds
c0 + δc + u/cosθ

(14)

t− =
∫ l−

0

ds
c0 + δc− u/cosθ

(15)

In the formula, u is the flow velocity of seawater, c0 is the average speed of sound
in the reference environment, and δc represents the amount of disturbance of the speed
of sound. t+ and l+ are the propagation time and time path of sound waves from station
A to station B, t− and l− are the propagation time and time path of sound waves from
station B to station A. Considering c0 � δc, only the second-order Taylor expansion is
considered, and the higher-order terms in the Taylor expansion are ignored. Then the flow
velocity along the sound ray direction can be calculated by the reciprocal propagation time
difference, denoted by ∆ti:
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∆ti = t+i − t−i =
∫ ds

c+u/cosθ −
∫ ds

c−u/cosθ

≈
N
∑

j=1

(
∆s+

c0+δc −
∆s+

(c0+δc)+
2 ·cosθ

·u
)

−
N
∑

j=1

(
∆s−

c0+δc +
∆s−

(c0+δc)−
2 ·cosθ

·u
) (16)

2.2. Flow Field Acoustic Tomography Least Square Method

Equation (16) can be expressed as a matrix form y = Ex + n, where y represents
the data vector, E is the observation matrix, x is the vector containing the laminar flow
unknowns, and n is the noise vector. Under normal circumstances, the number of observa-
tions is not equal to the number of tomographic parameters, so a unique solution cannot
be obtained by solving linear algebraic equations. Usually, the least square method is
used to solve the problem that the number of observations is greater than the number of
tomographic parameters, that is, the overdetermined problem and the regularized least
square method is used to solve the problem that the number of observations is less than the
number of tomographic parameters, that is, the underdetermined problem. The minimized
cost function is expressed as:

J(x) = ‖y− Ex‖2 + α(x− x0)
Tγ(x− x0) (17)

where α represents the regular coefficient, x0 is the prior estimate of x, and γ represents the
regularization matrix. Therefore, the final solution is expressed as:

x̂ = x0 +
(

ETE + αγ
)−1

ET(y− Ex0) (18)

In the process of solving the regularization matrix, γ is selected empirically, and
there is no theoretical support, so the application of regularized least squares method has
uncertainty. In the actual ocean environment under the Arctic ice, nonlinear interference
makes the bandwidth of the received acoustic signal larger [15], resulting in a large error
in the time difference obtained by acoustic tomographic reciprocal transmission. Tradi-
tional inversion algorithms are more derived from linear theory. In the case of nonlinear
disturbances in the inversion estimation, it is easy to produce over-fitting, which has great
limitations in the application under Arctic ice. Therefore, an algorithm that can improve
the calculation accuracy of acoustic tomography under Arctic ice is urgently needed.

2.3. Flow Field Acoustic Tomography Based on CNN

The application of CNN [16] is a hot topic in the field of acoustics and can play a
powerful role in solving inverse problems. For example, Timo et al. [17] (2017) applied
convolutional neural network CNN to ultrasonic tomography to solve the problem of
porous material parameter estimation, saving labor costs. Araya-Polo et al. [18] (2018) used
a deep neural network (DNN) to build a velocity model from seismic traces, which greatly
improved the computational efficiency. Compared with the traditional inverse method, the
advantage of CNN is not only that it does not need to evaluate the forward model, but also
that it can automatically screen important characteristic parameters.

In this study, the acoustic data obtained from the forward model are used as input,
and then, the convolution layer is connected to carry out convolution operation on each
feature node to extract the characteristic values. Then, pooling processing is carried out to
further sample the eigenvalues of the convolutional layer. Using the maximum pooling
layer to process data cannot only improve the training efficiency of the convolutional
neural network but also improve the robustness and stability of the algorithm. Then,
the transpose convolution operation is applied to enlarge the size of the output to be the
same as the size of the input. Finally, the flow velocity is predicted and estimated by the
nonlinear rectification ReLU function. Figure 2 shows the flow chart of convolutional
neural network training:
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The CNN method is described in mathematical expressions as follows:

y = Net(x; Θ) = σ
(

ω(2)·σ
(

ω(1)·x + b(1)
)
+ b(2)

)
(19)

In the formula, Net( ) represents the non-linear mapping of the network, x and y
are the input and output of the network, respectively, and Θ is the parameter set that{

ω(1), b(1), ω(2), b(2)
}

needs to learn, where
(

ω(1), ω(2)
)

represents the weight between

layers, and
(

b(1), b(2)
)

is the bias. σ( ) is the non-linear rectification function used, includ-
ing sigmoid, tanh, and ReLU functions. ReLU is a commonly used activation function
at present. Its convergence speed is much faster than sigmoid and tanh. It has better
performance when building large complex networks and can be given priority.

The application of CNN in Arctic sub-ice acoustic tomography is to find a non-linear
mapping function between input and output, learn features from given data, and improve
computational efficiency while preventing overfitting. The flow rate inversion estimation
process based on CNN is shown in Figure 3. The mathematical expression of the output
layer is:

u = Net(a; Θ) (20)

Among them, a is the original acoustic dataset, including the forward and backward
propagation time, incident angle, sound velocity, trajectory length, and other characteristics
of the ray, and u represents the flow velocity predicted by the network. The application of
convolutional neural network requires two processes of training and prediction. Before
training the dataset, first, establish a forward model and combine the ray theory equation
to simulate the sound propagation process in a moving medium, to obtain acoustic data
as input. Input the input and the corresponding output into the network for training and
learning and continuously optimize and adjust the weight and bias during the training
process to obtain the nonlinear mapping relationship from input to output. The optimiza-
tion benchmark is to find a set of weights and biases that minimizes the difference between
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the output and the predicted value given by the network. Therefore, the loss function f is
expressed as:

f = argmin
1

mN

N

∑
n=1

L(Net(a; Θ), u) (21)

where m is the total number of samples, and L() represents the error between the predicted
value and the true value. Then, choose L2 regularization method to improve generalization
ability, leave the most relevant features and reduce the weight of unimportant features.
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Use back propagation and gradient descent to update the learning parameter Θ. Using
the chain derivation rule to obtain the network model gradient layer by layer from back
to front, by randomly selecting a small batch of samples each time, the network model
parameters are continuously updated along the negative direction of the gradient (first
derivative) of the loss function. Until the change in the gradient reaches the specified
threshold or no more changes, the learning process is stopped. The optimization problem
is expressed as:

f = argmin
1

mK

K

∑
n=1
‖u− Net(a; Θ)‖2

2 (22)

The network parameter update expression is as follows:

Θt+1 = Θt − ε
1
m
∇Θ

m

∑
n=1

L(at; ut; Θt) (23)

Among them, the number of training steps is represented by t, the learning rate is
ε, the amount of data in each batch is represented by m during small-batch learning, the
input value of the nth sample of each batch of data is at, and the target true value is ut. The
loss function of the predicted value and the true value is denoted by L(·). After the model
training is completed, it enters the prediction stage and inputs new acoustic data to the
saved network to obtain the flow velocity in a certain area.

3. Modeling and Simulation
3.1. Model Establishment

Establish a marine test environment [19], the density of seawater is 1000 kg/m3, the
speed of sound on the sea surface is 1530 m/s, the speed of seafloor is 1500 m/s, and there
is a certain sound velocity gradient. The seawater and the seabed are regarded as the fluid-
fluid interface, and the sound velocity of the adjacent fluid is set to 1575 m/s, the density
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is 1700 kg/m3, and the attenuation coefficient is changed by 0.9× f0/(20× c1 × lge). The
sea depth is 110 m, the horizontal range is 1500 m, the sea surface is set as the Rayleigh
roughness model, and the root mean square roughness is 1 m. The three sound sources are
at a depth of 25 m, 35 m, and 45 m, and the total source power of the emitted sound waves
is 1 [W/m]. For all calculation domains including seawater and seabed, free triangular
meshes are used for subdivision. Considering the computational complexity and efficiency
issues, the maximum unit size customized for this study is 20 m. The time step set by the
study is range (0, 0.001, 1) s. Figures 4–7 show the ray propagation at each time point.
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Assuming that the seawater velocity is a one-dimensional velocity structure, the model
is divided into 3 layers, the velocity of 0–20 m is 2 m/s, the velocity of 20–40 m is 1 m/s, and
the velocity of 40–110 m is 0.5 m/s. The eastward flow rate is positive, and the westward
flow rate is negative. Obtain the acoustic ray’s forward and reverse propagation time as
shown in Table 1.

Table 1. Forward and backward propagation time.

Forward Propagation Time/s Backward Propagation Time/s 4t/s

1 0.9908667974750063 0.9921370357778033 −0.001270238
2 0.9814290042702533 0.9832276442346188 −0.00179864
3 0.9911920895784465 0.9924207624924704 −0.001228673
4 0.9845382912123009 0.9855862764180756 −0.001047985
5 0.9909932804115785 0.9922227519661865 −0.001229472
6 0.9861684623886157 0.9869143234892909 −0.000745861

3.2. Flow Field Acoustic Tomography Error and Accuracy Judgment Index

In order to evaluate the accuracy of the least squares algorithm and the convolutional
neural network inverting the flow velocity, this paper measures the accuracy of the predic-
tion model based on the average absolute percentage error, an evaluation index. Calculated
as follows:

MAPE =
1
m

m

∑
i=1

∣∣∣∣yi − ui
yi

∣∣∣∣× 100% (24)

In the formula, yi represents the real flow velocity value, and ui is the predicted flow
velocity value. The average absolute percentage error indicates the degree of deviation
between the predicted value of the flow rate and the actual value. It is more reasonable to
use this indicator to evaluate the flow rate prediction effect under the level stratification.
At the same time, the condition number is introduced to judge the stability of the matrix
∆t = Eu + n solved by the least squares, and the condition number of the matrix E is used
to measure the sensitivity of the output of the matrix multiplication inverse to the input
error. If ∆t is slightly disturbed, the condition number of E is larger, and the flow velocity
u obtained at this time will have a big change. In other words, the larger the condition
number, the worse the sensitivity.

4. Simulation Results
4.1. Least Squares Simulation Results

Based on the least squares flow velocity tomography method, for a simple flow field
structure, the characteristics of the flow field can be basically reconstructed. Table 2 shows
the calculated values obtained by releasing different numbers of acoustic rays and the
corresponding error results.



J. Mar. Sci. Eng. 2021, 9, 755 10 of 15

According to the tomographic results in Figure 8, the least squares method can be used
to chromatogram the structural features of a simple flow field, u0 represents the true value,
and u11 is the predicted value. As can be seen from Table 2, when the number of velocity
layers is three, the velocity result obtained by releasing three acoustic rays is closer to the
true value than that obtained by releasing more than three acoustic rays, which indicates
that the essence of the least square method does not obtain the accurate solution but finds
the optimal solution. At the same time, according to the average absolute percentage error
(MAPE) value in the table, the inversion estimation accuracy of flow velocity of 1 m/s is
higher than that of flow velocity of 0.5 m/s, indicating that the larger the flow velocity is,
the more accurate the inversion results will be. It can also be found from the table that
when six acoustic rays are released, the condition number of the matrix calculated is 9.0633,
and as the acoustic ray increase, the matrix condition number also increases, indicating
that the perturbation of time difference will have a great impact on the result. That is, when
simulating an uneven ocean environment, the inversion result based on the regularized
least square tomographic flow velocity will be inaccurate.
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Figure 8. Least squares method to obtain the velocity compared with the real value.

Table 2. Flow velocity inversion results.

0–20 20–40 40–110 Condition Number Mean Absolute Error

3 2.43632 1.10469 0.42396
6.07417 0.15831MAPE 0.21816 0.10469 0.15208

4 2.24261 1.01349 0.77710
6.69373 0.229665MAPE 0.121305 0.01349 0.5542

5 2.74908 0.68197 0.75077
7.74111 0.398037MAPE 0.37454 0.31803 0.50154

6 2.5162 0.8419 0.7991
9.0633 0.338133MAPE 0.2581 0.1581 0.5982

4.2. Implementation of CNN

The implementation of CNN is based on the Keras framework and is built using
a sequential model. According to the parameters mentioned in Equation (16) and the
simulation of 3.1 forward model, seven characteristic values of incidence angle, depth,
sound velocity, and propagation time difference of acoustic ray in forward and reverse time
flow are obtained, respectively, and 168 groups of original acoustic data are extracted as
input. The output data are the unique flow rate value corresponding to each group of input
data. In order to make the data better as the input of the convolutional neural network, the
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original data are also standardized to make the entire neural network more stable in the
middle output value of each layer.

Under supervised learning, the test dataset (size = 0.3) relies on the optimal model
obtained in advance training and uses this model to map the input to obtain the corre-
sponding output, so as to achieve the purpose of flow velocity inversion. The specific
implementation process is shown in Figure 9.
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The design of the convolutional neural network uses four convolutional layers, namely,
Conv1, Conv2, Conv3, and Conv4. After each layer of convolution operation, the ReLU
activation function is used for correction, and then, the sampling layer is used for the
pooling calculation. The size of the convolution kernel is 3 × 3, and a pooling layer is
added after every two convolution layers. The pooling size of each layer is 2 × 2, and the
maximum value in the pooling area is taken as the neuron output value of the pooling
layer, so as to improve the calculation efficiency. After the second pooling layer, connect
the fully connected layer, expand the pooling result obtained in the previous step into a
one-dimensional feature vector, adjust the parameter Dropout = 0.5 to prevent overfitting,
and finally, obtain the flow velocity data through the linear function output.

Different from the use of the convolutional neural network for image recognition, this
study uses one-dimensional [19] data, and the number of network channels is no longer
three but one. Before performing the convolution operation, use valid padding to fill the
boundary of the matrix to increase the size of the matrix so that the input and output sizes
are the same.

4.3. Experimental Analysis of CNN

In the process of model training, the Adam optimizer is selected to verify the accuracy
of the model, and the mean square error is used as the loss function. The convergence of
the model is judged by changing the number of iterations. When the loss value gradually
approaches a certain value and only fluctuates in a small range, it is considered that the
convergence state has been reached. After setting the hyperparameters, the network that is
considered to be more effective is selected. Figure 10 is the loss curve obtained by making
the model iterate 500 times.
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Figure 10. Training and testing of number of epochs.

Figure 11 shows an exemplary result of applying this method. The results show
that the 0–20 m depth velocity value is 1.9283856 m/s, the 20–40 m velocity value is
1.0018886 m/s, and the 40–110 m velocity value is estimated to be 0.5931605 m/s. It can be
seen from the results that there is a good match between the predicted value and the true
value. Based on this, the accuracy of the prediction model is further measured, and the
calculated average absolute percentage error is 0.074672267, which is less than the average
percentage error obtained by the least squares. Therefore, in a uniform ocean environment,
using CNN to perform flow velocity inversion estimation results is more accurate.
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Figure 11. CNN to obtain the velocity compared with the real value.

In order to further verify the effectiveness of the proposed method, we add Gaus-
sian white noise with a zero mean standard deviation of 5 × e−8 to each set of time
difference feature parameters [20,21] to simulate the inhomogeneity of the marine envi-
ronment. Figure 12 shows the predicted results using the proposed method with noisy
input. The velocity value of 0–20 m depth is 1.9210289 m/s, the velocity value of 20–40 m
is 1.0035175 m/s, and the estimated velocity of 40–110 m is 0.6070473 m/s. The calculated
average absolute percentage error is 0.085699217.
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Figure 12. CNN to obtain the velocity compared with the real value under disturbance.

Compared with the case of no interference, the prediction result with noisy input is
slightly worse, but it is still better than the traditional inversion method, revealing that
the proposed method can still produce acceptable results in the case of disturbance. All
in all, even if it is disturbed by the nonlinearity of the actual marine environment, the
convolutional neural network can estimate the actual flow velocity value through nonlinear
mapping inversion. In addition, this method has high calculation efficiency. It only needs
to consume time cost in the training model stage. After the optimal model is saved, the
corresponding velocity value can be obtained by only inputting each index parameter in
the prediction work. Therefore, it is proved that the inversion algorithm based on the
convolutional neural network can stably realize the feasibility and reliability of the flow
rate output.

5. Conclusions

This paper mainly focuses on the study of acoustic tomography methods for the flow
field under ice in polar regions. Under the cover of Arctic sea ice, sub-ice acoustic tomogra-
phy is the only feasible method for large-scale current measurement in the Arctic. In high
latitude areas, under the action of Coriolis force, the unevenness of the marine environment
greatly affects the accuracy of sub-ice acoustic tomography. Through theoretical research
and simulation of the flow field tomography of the regularized least squares method, this
kind of disturbance cannot be characterized in the calculation of sub-ice acoustic tomogra-
phy in a constant form or an empirical function, and it is difficult to continue to be applied
in the case of uneven seawater. Based on this, an acoustic tomographic ocean current
inversion estimation method based on convolutional neural network is proposed.

This seawater disturbance is introduced into the acoustic tomography calculation in
the form of a Gaussian function. With the help of COMSOL and programming software,
the finite element method is used to construct the sound field and marine environmental
parameters. The results show that CNN can effectively approximate the inverse of the
nonlinear operator. When in a real uneven ocean environment, the constructed network
can still calculate a satisfactory flow velocity value. Moreover, this method has high
computational efficiency and only requires time and cost in the training model stage. After
the optimal model is saved, only the various index parameters need to be input when
performing prediction work to obtain the corresponding flow rate value. The time in the
entire forecasting process is negligible. The simulation results verify that CNN can stably
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realize the effectiveness and reliability of flow velocity reconstruction in the under-ice
acoustic tomography problem.
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