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Abstract This study introduces a Bayesian logistic regression framework that is capable of providing
skillful probabilistic forecasts of Arctic sea ice cover, along with quantifying the attendant uncertainties.
The presence or absence of ice (absence defined as ice concentration below 15%) is modeled using a
categorical regression model, with atmospheric, oceanic, and sea ice covariates at 1‐ to 7‐month lead times.
The model parameters are estimated in a Bayesian framework, thus enabling the posterior predictive
probabilities of the minimum sea ice cover and parametric uncertainty quantification. The model is fitted
and validated to September minimum sea ice cover data from 1980 through 2018. Results show overall
skillful forecasts of the minimum sea ice cover at all lead times, with higher skills at shorter lead times, along
with a direct measure of forecast uncertainty to aide in assessing the reliability.

Plain Language Summary Every summer, sea ice in the Arctic undergoes melt and retreat,
allowing access to otherwise difficult to reach areas. This has sparked growing interest in short‐ and long‐
term forecasting of summer sea ice to assist in planning and preparation of logistically intensive Arctic
expeditions. Currently, forecasts more than 3 months in advance tend to be less skillful than forecasts made
less than 3 months in advance. This study presents a novel approach to seasonal probabilistic forecasts of
the minimum September sea ice cover through regression analysis, relating minimum summer sea ice to
winter and spring sea ice, atmospheric, and oceanic conditions. We use “skill scores” to evaluate how well
our forecasts perform in a variety of circumstances. We find that this method is able to skillfully predict
up to 7 months early the probability that sea ice will be present across the entire Arctic Ocean at the summer
minimum. This means that stakeholders interested in access to the Arctic Ocean during summer can
have reliable long‐term forecasts to aide in planning and preparation.

1. Introduction

Sea ice is a major component of the Arctic climate system, influencing atmospheric and oceanic circulation
by inhibiting heat and moisture exchanges between the ocean and atmosphere and reflecting most of the
incident solar radiation. Since the beginning of the satellite era in 1978, sea ice cover in the Arctic ocean
has seen a decrease in all seasons, with an annual decrease rate of 4% per decade (Cavalieri &
Parkinson, 2012) and the most dramatic decline experienced in September (Onarheim et al., 2018; Stroeve
& Notz, 2018). Since 2007, the September Arctic sea ice extent has consistently remained below the pre‐
2007 records. Decreasing summer ice cover has led to an extension of the Arctic ocean open water season
by about a week each decade (Stroeve, Markus, et al., 2014; Stroeve & Notz, 2018). This increase in Arctic
accessibility is of keen interest for geopolitics, resource extraction, shipping, tourism, and scientific research.
Skillful forecasts of minimum sea ice and open water passages is therefore of great importance to these and
other stakeholders.

The changing Arctic climate and high variability of sea ice has sparked growing interest in modeling and
predicting summer sea ice conditions. Following the then record low September sea ice extent in 2007,
the Study of Environmental Arctic Change (SEARCH, https://www.searcharcticscience.org/seaiceoutlook)
began soliciting Sea Ice Outlooks (SIOs) from the scientific community, forecast centers, and the public.
Now managed by the Sea Ice Prediction Network (SIPN) (https://www.arcus.org/sipn/sea‐ice‐outlook),
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interest and participation in SIO has grown from 39 submitted predictions in 2008 to 112 predictions in 2018,
with a variety of dynamical (coupled ice‐ocean models or coupled ice‐ocean–atmosphere models), statisti-
cal‐, mixed‐, and heuristic‐based methods (see (Hamilton & Stroeve, 2016).

Dynamical models for seasonal sea ice predictions use sea‐ice conditions, ocean temperatures, and/or atmo-
spheric conditions to initialize the models for each season (Msadek et al., 2014). These models can be
coupled ice‐ocean models with prescribed atmospheric forcing such as the Pan‐Arctic Ice‐Ocean Modeling
Assimilation System (PIOMAS) (Zhang et al., 2008) or coupled ice‐ocean–atmosphere models such as
CFSv2 (Wang et al., 2012) and CanSIPS (Sigmond et al., 2013). Typically, these models are used to create
ensemble forecasts from which estimates of the minimum September sea ice extent as well as spatial field
probabilities can be obtained. While these methods have shown promise in recent years, skillful forecasts
at lead times greater than 4 months remain elusive (Bushuk et al., 2017) and forecast uncertainty is not well
quantified.

Statistical forecasting of Arctic sea ice cover dates back to the 1980s and has developed substantially in recent
years. Early forecasts focused on predictions utilizing the relationships between sea ice and atmospheric
(Barnett, 1980;Walsh, 1980), oceanic (Johnson et al., 1985), or sea ice (Johnson et al., 1985; Walsh, 1980) pre-
dictors. The primary focus was to predict a single parameter such as total sea ice extent, either regionally
(Drobot, 2007; Drobot & Maslanik, 2002) or pan‐Arctic (Drobot et al., 2006; Lindsay et al., 2008). More
recently, statistical methods have been used to provide spatial field predictions of sea ice concentration
using a variety of techniques such as a linear Markov model (Yuan et al., 2016), a vector autoregressive
model (Wang et al., 2015), a deep neural network (Chi & Kim, 2017), a convolutional neural network
(Kim et al., 2020), and a data‐adaptive harmonic technique (Kondrashov et al., 2018). There is no
statistical method in vogue to generate probabilistic spatial field forecasts presented in the yearly SIO,
which motivates the need for a statistical method to join the dynamical model forecasts.

This study presents a novel approach to probabilistic minimum sea ice forecasts by employing multivariate
Bayesian logistic regression at Pan‐Arctic grid points. By utilizing a statistical framework, the output of this
technique is not merely a point estimate of predicted probabilities, but rather a distribution from which a
direct quantification of uncertainty is available. Forecasts are made for minimum sea ice cover for 1‐ to 7‐
month lead times, and performance is evaluated across the spatial domain as well as at local grid points
for each lead time using both a rolling‐validation technique and a drop‐one cross‐validation technique.
This method is a compliment to the existing suite of statistical and dynamical sea ice forecasting models,
and the scope of this paper is to introduce this method, rather than a stand‐alone study of sea ice variability.

2. Data and Methods
2.1. Sea Ice

Sea ice data are obtained from the Sea Ice Index products housed at the National Snow and Ice Data Center
(NSIDC) (Fetterer et al., 2017). The data are derived from two sources: (1) the Near‐Real‐Time DMSP SSMIS
Daily Polar Gridded Sea Ice Concentrations (NRTSI) from the Special Sensor Microwave Imager/Sounder
(SSMIS) on board the Defense Meteorological Satellite Program (DMSP) satellites (Maslanik &
Stroeve, 1999) and (2) the combined Nimbus Scanning Multichannel Microwave Radiometer (SMMR,
1979–1987), the DMSP Special Sensor Microwave/Imager (SSM/I, 1987–2007), and the Special Sensor
Microwave Imager/Sounder (SSMIS, 2007 to present) 25 km × 25 km gridded sea ice concentration data pro-
duct from the NASA Team sea ice algorithm (Cavalieri et al., 1996). September minimum sea ice cover at
each grid cell (where ice is deemed “present” if the concentration is above 15%) is calculated for the period
1980–2018.

2.2. Atmospheric and Oceanic Variables

Studies have shown that spring atmospheric conditions have a strong impact on summer sea ice melt
(Kapsch et al., 2014, 2019). Favorable conditions transport moisture to the Arctic, increasing cloud cover
and water vapor affecting anomalous sea ice concentrations (Kapsch et al., 2013). Increased cloud and water
vapor have been linked to earlier melt onset through increased longwave downwelling (Mortin et al., 2016).
Because of its long memory, the ocean can be a source for long‐term predictability of the climate and sea ice
(Boer, 2004; Griffies & Bryan, 1997; Guemas et al., 2016; Lindsay et al., 2008). Building on the extensive
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literature studying the predictability and variability of sea ice (Huang et al., 2019; Ionita et al., 2019;
Olonscheck et al., 2019; Rigor et al., 2002; Tivy et al., 2007; Wang et al., 2015, 2019; Yuan et al., 2016), several
local atmospheric predictors were considered for inclusion including downwelling longwave and shortwave
radiation, cloud fraction, sea level pressure, total column water vapor, and surface air temperature.
Additionally, the first principal component (PC) of geopotential height at 500 and 1,000 hpa (north of 60°
latitude) and Atlantic and Pacific (as defined by WOCE Data Products Committee. 2002, for latitudes north
of the equator) sea surface temperatures (SSTs) were included as predictors. Selection of covariates was
determined using Bayesian Information Criterion (BIC) and heuristic decision making. Relying on BIC only
results in different model structures at each grid cell and lead time. For simplicity, a single model structure
was chosen based on BIC results and heuristic selection. Allowing different covariates per grid cell or lead
time is left for future work. The final selected model uses local surface air temperature, downwelling long-
wave radiation, and sea ice concentration as well as the first PC of geopotential height at 500 hpa and
Atlantic and Pacific SSTs. All atmospheric and oceanic values are derived from the Modern Era
Retrospective Analysis for Research and Applications (MERRA‐2) (Gelaro et al., 2017). MERRA‐2 uses
the Goddard Earth Observing System, Version 5.12.4 (GEOS‐5) atmospheric model and Global Statistical
Interpolation (GSI) analysis scheme and has an approximate spatial resolution of 0.5° latitude by 0.625°
longitude. MERRA‐2 has been shown to perform well compared to other common reanalysis products in
terms of Arctic atmospheric variables (Graham et al., 2019) as well as oceanic variable (Lim et al., 2017).
Local data are subsetted to only include locations with a latitude >40°N and are regridded to match the coor-
dinate reference system projection of the sea ice data (polar stereographic projection at a grid cell size of
25 × 25 km).

2.3. Logistic Regression Model

Logistic regression is a technique that specifies the probability that a binary response variable is one class
given the values of explanatory variables: π(x)= p(Y= 1|X= x), where π(x) lies between 0 and 1, the random
variable Y takes on values 0 or 1, and X is a vector of predictors. In this study, the response variable is the
presence/absence of sea ice on the day of minimum extent, and the explanatory variables are the anomalous
sea ice concentration, atmosphere, and ocean predictors discussed in sections 2.1 and 2.2. The authors recog-
nize that these covariates can exhibit a strong trend over the study period, but because the response variable
is binary and cannot be detrended, anomalous values are used rather than detrended values. An exploratory
analysis using detrended values yields results that do not change significantly.

The probability π(x) is parameterized as

π xð Þ ¼ eβ0þβ1X1þ…þ βmXm

1þeβ0þ β1X1þ…þ βmXm

where Xi represents the ith of m covariates with corresponding regression coefficient βi, typically estimated
by maximum likelihood whose uncertainties rely on large‐sample central limit theorem approximations.
Small sample sizes can lead to complete or quasi‐complete separation in which the response variable Y
is completely separated by a predictor variable, X1, for example, p (Yi = 1|Xi1 ≥ 2) = 0 and p (Yi = 1|
Xi1 < 2) = 1. Separation is a common problem in logistic regression and was apparent when applied here,
but Bayesian methods can be used to mitigate this effect with application of prior distributions.

2.4. Bayesian Framework

The Bayesian approach provides a method for updating the distribution of statistical parameters of the
model based on observations given some prior beliefs about the true behavior of the system. Here, we seek
the posterior distribution of regression coefficients, p(β|data), using a prior distribution for β, p(β), and a con-
ditional likelihood, L (data|β). Our conditional likelihood is products of independent Bernoulli trials whose
probability parameters are parameterized according to the logistic regression above. Following Gelman et
al., 2008, we use independent center zero Cauchy prior distributions for each regression coefficient with
scale 10 for the intercept and 2.5 for other regression coefficients. In practice, the posterior distribution of
the regression coefficients in logistic regression is not available in closed form and is approximated by gen-
erating samples that are approximately distributed according to the posterior using Markov Chain Monte
Carlo (MCMC) techniques (Gelman et al., 2013). MCMC approaches can be computationally prohibitive;
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we therefore approximate the posterior mode of regression coefficients using an approximate Expectation‐
Maximization (EM) algorithm (Dempster et al., 1977), and gather associated standard errors in accordance
with Gelman et al. (2008), using the “arm” package (Gelman & Su, 2018) in the R programming language.
Given the posterior mode, posterior predictive samples are generated by sampling regression coefficients
according to a multivariate normal distribution followed by samples from the logistic predictive model, con-
ditioned on the posterior parameter samples. The final output is an approximated posterior predictive distri-
bution of the probability of the presence of sea ice (Figure S1 in the supporting information).

2.5. Application

With this framework, a separate Bayesian logistic regression model is fitted at each grid point with valid pre-
dictor values. Any location that has never seen a change in sea ice cover is omitted. The output is a posterior
distribution of probabilistic forecasts of sea ice cover at each grid point from which a median value and cred-
ible intervals can be determined. Because monthly mean values are used which are not available until the
following month, a 1‐month lead time (made in August) corresponds to July monthly mean values.
Additionally, a single value pan‐Arctic sea ice extent is derived from these probabilistic forecasts as outlined
in section 3.3.

2.6. Skill Measurement

To test the overall performance of this model, a rolling‐validation scheme is applied in which years 1980
through 1989 were used for training the model to forecast year 1990, after which years 1980 through 1990
were used to forecast year 1991, and so on through prediction year 2018. The skill is quantified via Brier
Scores (BS) for each lead time. A Brier Score is the mean square error of probability forecasts for dichoto-
mous events, in this case presence (1) or absence (0) of sea ice. The BS is

BS ¼ 1
N
∑N

t¼1 f t − otð Þ2

where ft are the forecasted probabilities, ot are the observed outcomes, and N is the number of forecasts.
The BS takes on values in [0,1], with a smaller score representing better predictions. To compare this tech-
nique to a reference case, the Brier Skill Score (BSS) is calculated by comparing the Brier Score to clima-
tology following

BSS ¼ 1 −
BS

BSref

where BSref is the Brier Score using climatology as the forecasted probabilities. Here, BSS = 0 is equal to
climatology, BSS > 0 outperforms climatology, and BSS < 0 is worse than climatology. Climatology is cal-
culated as the proportion of the presence of sea ice at each grid over all the training years. We use two
forms of climatology: (1) using all the previous years to predict the current year, hereon referred to as
the full climatology, and (2) using the previous 10 years to predict the current year, hereon referred to
as the 10‐year climatology. This method is also used to measure the skill of the fully fit model compared
to a concentration‐only model in which sea ice concentration is the only predictor, showcasing the value
of the atmospheric and oceanic predictors.

Assessment of Brier Scores are implemented in two ways: (1) A single “global” BS is calculated across the
spatial domain (north of 67° latitude) for each year individually in a similar fashion as the SIO, where N
is the total number of grid locations, and (2) a local BS at each individual grid point whereN is the total num-
ber of years (29).

The performance of this method is also evaluated using a drop‐one cross‐validation scheme applied to every
year of observation at each lead time. For example, if year 2000 is dropped, the model is fit on all other years
and a prediction is made with year 2000 data. This is repeated for all years. These results show only slightly
greater “global” skill than the rolling‐validation scheme (though with a very similar temporal pattern,
Figure S2). The local BS using cross validation show slight improvement compared to the rolling‐validation
results by increasing the number of locations that show skill (Figure S3). The rolling validation replicates the
practical forecast system and is therefore chosen for further discussion in this paper, while the cross‐valida-
tion results can be found in the supporting information text.
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The forecasted Pan‐Arctic sea ice extent is compared to two baseline statistical models: a climatology model
and an anomaly persistence model. The forecast from the climatology model is simply the mean minimum
sea ice extent from all previous years and therefore does not change with lead time. The anomaly persistence
model assumes that the sea ice extent anomaly at a given lead time will be the same as the anomaly during
the September minimum. The skill of the Bayesian logistic regression model is compared to these baseline
models with common quantitative performance measures, namely the Nash‐Sutcliffe model efficiency coef-
ficient (NSE), the root‐mean‐square error (RMSE), and the mean absolute error (MAE) (Chai &
Draxler, 2014; Chatur et al., 2013; DeRousseau et al., 2019; Nash & Sutcliffe, 1970).

NSE, historically used to assess the predictive power of hydrologic models, quantifies how well a model
simulation can predict the outcome variable. Given the observed value, yi, the predicted value, ŷi, and the
average value of the data (climatology at a given grid cell), y, NSE is calculated as

NSE ¼ 1 −
∑i yi − byið Þ2
∑i yi − yð Þ2

NSE takes on values in (−∞,1] with higher values indicating greater accuracy. A score of 0 indicates that
the model predictions are as accurate as the mean of the observed data, and a score that is less than zero
indicates that the mean is a better predictor than the model.

The MAE is a measure of the average magnitude of errors of a model by using the absolute value of the
errors. It represents the median error of the model and is measured on the same scale as the observed vari-
able, with lower values indicating a better model fit. Given observed values, yi, predicted values, ŷi, and n
observed values, MAE is calculated as

MAE ¼ ∑n
i¼ 1 byi − yij j

n

The RMSE is the standard deviation of the prediction errors and indicates how concentrated the data are
around the model fit. Similar to MAE, RMSE is measured on the same scale as the observed variable and is
always positive due to the squared residuals in its calculation. These squared terms additionally highlight
the effect of outliers, an important feature when high errors are a concern. RMSE is calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼ 1 byi − yið Þ2
n

s

In this study all three metrics are used to capture the accuracy and median and mean errors of Pan‐Arctic
minimum September sea ice extent forecasts.

3. Results and Discussion
3.1. Forecasted Probabilities and Uncertainties

To assess the performance of this method under varying conditions, forecasts made for a recent low‐extent
year and a recent high‐extent year (2012 and 2009, respectively) are examined in closer detail (Figure 1). The
year 2012 is the record low sea ice minimum year since the start of the satellite era, which resulted from a
combination of preconditioned overall ice reductions and a strong summer storm that entered the central
Arctic in early August (Parkinson & Comiso, 2013). The year 2009, on the other hand, had the highest
September minimum extent in the last decade. Despite an Arctic dipole anomaly (DA) in June and July
bringing warm southerly winds into the Chukchi and East Siberian Seas, August and September were domi-
nated by low pressure in the Chukchi and Beaufort Seas along with high pressure over Greenland, likely
favoring ice divergence and slowing the decline in ice extent (Stroeve et al., 2012). Both years proved challen-
ging for forecast systems (Stroeve, Hamilton, et al., 2014).

The output of each forecast contains a probability spatial field (Figures 1a and 1c) as well as spatially mapped
width of the central 95% posterior predictive credible interval (Figures 1b and 1d). Overall, the forecasts cap-
ture the general spatial features of the minimum extent with greater accuracy at shorter lead times. Greater
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uncertainties are mostly restricted to areas near the minimum sea ice edge signifying high confidence across
most of the Arctic but inexact forecasts surrounding the sea ice edge.

Global Brier scores are used in the SIO to measure the skill of forecast submissions and are therefore used
here as well (Figure 1, white text). Forecasts for 2009 (Figure 1c) contain similar skill across all lead times.
In fact, January predictors provide the second most skillful forecast. The uncertainty however, shows gener-
ally wider credible intervals at longer lead times, decreasing as lead time decreases (Figure 1d). Forecasts for
2012 show roughly constant skill using winter predictors (January throughMarch), followed by a substantial
increase in skill from May to June (Figure 1a). In both years, there is a spike in uncertainty using July pre-
dictors compared to May and June. Similar results are found for years 2007 (second lowest extent year,
Figures S4a and S4b) and 1996 (highest extent years, Figures S4c and S4d). Because forecasts made in July
rely mostly on sea ice concentration as a predictor, inclusion of the remaining covariates is a potential source
of this surge in uncertainty.

3.2. Forecast Skill Through Rolling Validation

The rolling‐validation local Brier skill scores (found individually at each grid cell) show high forecast skill at
mid‐Arctic latitudes along the Northern Sea Route and in the Beaufort and Chukchi Seas (Figure 2). At
shorter lead times, high skill is present across most of the spatial domain, and as lead time increases the total
area over which the model outperforms both climatology forecasts decreases (Figures 2a and 2c). A similar

Figure 1. Example output at each lead time for years 2012 (a and b) and 2009 (c and d). Rows (a) and (c) show the median forecasted probability maps, and rows
(b) and (d) show the width of the central 95% posterior predictive credible interval. The black outline in each map shows the actual minimum extent for the given
year. Global Brier scores are in white text.
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Figure 2. Spatial maps of the rolling‐validation Brier Skill scores at all lead times compared to (a) full climatology, (b) concentration‐only model, and (c) 10‐year
climatology. Scores less than −1 have been assigned a value of −1 for clarity.

10.1029/2020EA001176Earth and Space Science

HORVATH ET AL. 7 of 18

 23335084, 2020, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020E

A
001176, W

iley O
nline L

ibrary on [07/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



pattern is observed when compared to the sea ice concentration‐only model, although skill decreases in June
and July as the sea ice concentration becomes the dominant predictor (Figure 2b). The high skill compared
to the sea ice concentration‐only model at long lead times can be explained by lower variability in sea ice
concentration during the winter and spring as well as spring atmospheric conditions affecting melt onset
which impacts ice retreat later in the season (e.g., Stroeve et al., 2016).

The full climatology BSS maps (Figure 2a) show little changes from January to April, then a gradual increase
in areal coverage of skill appears from April to July. The time period with increasing skill is when the melt
season ramps up and is an important transition period for the Arctic climate system. Persson (2012) found
that spring atmospheric processes can create significant surface warming in the Arctic prior to melt onset
occurring. As melting progresses, the surface albedo decreases, allowing more heat to be absorbed, further
enhancing melt (Stroeve et al., 2012). This signifies a transition where predictive power is transferred from
the atmosphere to the sea ice.

The 10‐year climatology BSS maps (Figure 2c) show less skill compared to the full climatology BSS, particu-
larly at lead times greater than 3 months. Because the 10‐year climatology uses sea ice cover from more
recent years in which sea ice covers a smaller area compared to the 1980s and 1990s, the lower BSS suggests
that our forecast system exhibits bias toward overpredicting the probability of sea ice cover. This is explored
further using a reliability diagram (Figure 3) in which forecasted probabilities from all grid boxes and all
years are binned into small groups of width 0.05 ranging from 0 to 1 (i.e., [0,0.05), [0.05,0.1), …, ([0.95,1]).
Then, for each bin, the frequency of occurrence of sea ice is determined from observations. Bias toward over-
predicting sea ice cover is seen here as most values from each lead time are below the 1 to 1 line, particularly
with forecasted probabilities closer to 1.

The contribution of atmospheric and oceanic covariates are examined by individually dropping these covari-
ates, refitting the model with the remaining covariates, forecasting, and comparing to the full model fit
(Figure 4). As before, positive BSS values indicate locations where the fully fit model outperforms the model
with the dropped covariate, indicating that the inclusion of that particular covariate adds predictive skill.

Figure 2. (Continued)
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Surface air temperature adds skill across much of the Arctic domain at lead times of 1 to 3 months
(Figure 4a). This area decreases as lead time increases, but skill is still provided in the Beaufort and
Chukchi Seas. Downwelling longwave radiation provides skill during the winter and spring, but less so at
shorter lead times (Figure 4b). During winter the surface energy budget is largely dominated by longwave
radiation and with spring comes the onset of melt in the snowpack atop sea ice. Once liquid water is
present, longwave radiation becomes less important in driving sea ice melt as demonstrated by providing
less skill at shorter lead times. Pacific and Atlantic SSTs provide skill in similar locations at concurrent
lead times with a notable increase in skill across much of the Arctic using May predictors (Figures 4c and
4d, respectively). The first principal component of wintertime extratropical SSTs has been linked to
changes in Arctic sea ice cover by influencing planetary wave propagation, thereby affecting the strength
of the polar vortex (Li et al., 2015). Because sea ice concentration is at or nearly 100% across most of the
Arctic during winter, winter and early spring SSTs can provide information on the state of the Arctic
climate when little information can be gained from the state of the sea ice. Geopotential height at 500 hpa
provides skill at longer lead times (4 to 7 months) in the central Arctic (Figure 4e). Rigor et al. (2002)
found that the memory of the wintertime AO persists through most of the subsequent year, influencing
sea ice advection and heat transport to the Artic from lower latitudes. While the first principal component
of geopotential height at 500 hpa is not the same as the AO index, it is representative of synoptic scale
circulation patterns that could impart similar impacts on summer sea ice.

Some of the skill maps in Figure 4 can appear spatially inconsistent, a result of separate model fitting at each
location. While this does not affect the performance of this model the authors recognize that this is a feature
that could be addressed further. Possible approaches are to apply a spatial smoother to the fitted regression
coefficients, place a spatial process on the prior distribution, include a spatial component in a Pan‐Arctic
model, or fit models regionally rather than locally, but this is left for future work.

Forecasts of the 2018 minimum sea ice cover probability via this approach were submitted to the SIO in
June, July, and August of 2018 (Figure 5) (Bhatt et al., 2019). Out of 120 total forecasts submitted to the

Figure 3. Reliability diagram showing the conditional distribution of observed sea ice cover, given the forecast probability, plotted against the forecast probability.
Colored lines and points represent predictor month, the dashed line is the 1:1 line representing perfectly reliable forecasts, and the histogram is of all
forecasted probabilities.
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Figure 4. Skill of full model fit compared to models with covariates dropped individually where dropped covariates are (a) air temperature, (b) downwelling
longwave radiation, (c) Pacific SST PC, (d) Atlantic SST PC, and (e) geopotential height at 500 hpa PC. Scores less than −1 have been assigned a value of −1
for clarity.

10.1029/2020EA001176Earth and Space Science

HORVATH ET AL. 10 of 18

 23335084, 2020, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020E

A
001176, W

iley O
nline L

ibrary on [07/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 4. (Continued)
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SIO in 2018, a total of 10 spatial field forecasts were submitted in June, 14 in July, and 12 in August. These
forecasts were made with a mixture of statistical and dynamic methods. The skill of each forecast was
measured using spatially averaged Brier Scores where a value of 0 represents a perfect forecast and a 1
represents no skill. The approach presented in this paper yielded a lower Brier score (higher skill) than all
other methods in June and July and was only outperformed by 1 forecast in August.

Figure 4. (Continued)

Figure 5. Forecasted probability fields of the 2018 minimum September extent that were submitted to the 2018 SIO. The black line represents the observed
minimum sea ice edge that occurred on 23 September 2018.
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Although 2018 was a fairly average extent year in the last decade, this method shows promise with the rela-
tively high performance and will continue to make forecasts in future years. The forecasted single value Pan‐
Arctic sea ice extent can also be obtained with this method and was submitted to SIO in 2018. This forecast,
however, was not as accurate as other statistical methods (Bhatt et al., 2019) as Pan‐Arctic sea ice extent is
not the value this method is designed for. Further discussion of this single value sea ice extent is discussed
in the following section.

Figure 6. Comparison of forecasted and observed minimum September extents: (a) time series of observed and forecasted minimum extents for each lead time
(monthly mean values used as predictors), and (b) global brier score for each lead time (solid lines) along with the fitted OLS linear regression (dotted lines).
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3.3. Pan‐Arctic Sea Ice Extent and Global Brier Scores

Because this method outputs a probability at a given grid point, to obtain a Pan‐Arctic sea ice extent each of
these probabilities needs to be converted into a binary output, the presence or absence of sea ice cover. This is
achieved by establishing a probability threshold (i.e., if the threshold is 50%, then any grid cell with a prob-
ability <50% is set to “ice free” and any grid cell with a probability ≥50% is set to “ice covered”). This thresh-
old is found by varying it from 1% to 99%, calculating the total sea ice extent by summing the area of grid cells
that are “ice covered,” and comparing to the observedminimum extent. This is performed for every year dur-
ing rolling validation and at every lead time which shows approximately a 70% probability threshold to be
the most accurate. This threshold, which should be 50% for a binary prediction, is a result of the bias toward
overpredicting sea ice cover probability discussed earlier.

Using this 70% threshold, time series of the forecast of minimum extent at each lead time are compared to
historical observations (Figure 6a). All lead times capture the overall decreasing trend from 1990 to 2018,
with large deviations in 2015 and 2016 (Figure 6a) and corresponding high Brier scores (Figure 6b). The
2015 errors are likely due to the dramatic changes the Arctic experienced that summer, with unusually
low temperatures in May and June followed by one of the then warmest Julys on record, and finally slowed
extent loss in late August and September (Stroeve et al., 2015). This resulted in underpredictions at short
lead times, and overpredictions at longer lead times. The strong central Arctic cyclone in August of 2016
is likely the cause of overpredicted extents that year, which is also observed in 2012 when a similar cyclone
occurred.

The global Brier score (Figure 6b) provides a measure of performance year by year and is the metric used in
the SIO post season reports (i.e., Bhatt et al., 2019). Long lead times (January–April) show a decreasing trend

Figure 7. Comparison of forecasted minimum September extents with a climatology model and an anomaly persistence model at 1‐ to 7‐month lead times. Skill is
measured via NSE, RMSE, and MAE. The dotted lines indicate the best possible score for each metric.
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in skill from 1990 to 2018 while short lead times (May–July) show either no trend or increasing skill, result-
ing in a slightly greater mean Brier score (averaged across all lead times) for years 2009–2018 (mean
BS = 0.092) compared to years 1990–1999 (mean BS = 0.089). Recent years show a noticeably larger spread
in Brier scores compared to the 1990s, a result of greater differences between long and short lead times. Since
1999, the Arctic has seen a dramatic decrease in overall sea ice thickness and multiyear ice (MYI) coverage
which now covers less than one third of the Arctic ocean (Kwok, 2018). This shift to predominantly seasonal
ice cover renders summer sea ice more susceptible to the highly variable summer atmospheric circulation
(discussed further in section 4), impacting the effectiveness of long lead seasonal forecasts as demonstrated
by the greater spread and higher peaks in Brier score since 2000 (Figure 6b).

Three metrics outlined in section 2.6 are used to assess the skill in Pan‐Arctic September minimum sea ice
extent forecasts compared to baseline statistical models (Figure 7). At all lead times the forecasted values
show greater accuracy using all three metrics when compared to both the climatology and anomaly persis-
tence models. The decreasing gap between skill scores for our model and the anomaly persistence model as
lead time decreases below 3 months reiterates the discussion in section 3.2 in that forecast skill comes pri-
marily from sea ice concentration as lead time decreases.

Interestingly, both forecast values and anomaly persistence outputs show a decrease in skill as lead times
decrease fromwinter to spring with the least accurate model forecasts occurring inMarch and the least accu-
rate anomaly persistence forecasts occurring in April for NSE and RMSE andMay for MAE. This touches on
the idea of a “spring predictability barrier” found by Bonan et al. (2019) in which forecasts initialized prior to
May are less skillful than forecasts initialized after May. However, here we have demonstrated that winter
geopotential height and SSTs add predictive power at longer lead times.

4. Summary and Conclusion

With expanding open ocean conditions in summer months, interest in Arctic accessibility is growing quickly
with much potential for socioeconomic benefit. The need for accurate seasonal forecasts of sea ice cover is
therefore of great use to stakeholders for route planning and is of interest to the scientific community.
This study has developed a novel approach for seasonal probabilistic forecasts of the minimum sea ice cover
using a Bayesian logistic regression framework. The output is a probabilistic spatial map of the location of
sea ice during the sea ice minimum extent, resulting in a direct measure of uncertainty at each grid point.
By including a combination of atmospheric, oceanic, and sea ice predictors, this method was able to make
accurate forecasts up to 7 months in advance across much of the Arctic Ocean. Additionally, providing
the uncertainty of forecasts can provide users with a measure of reliability of the predictive power of this
method.

The progression of BSSs from January to July depict the predictability of sea ice through the change in sea-
son. From January throughMarch the climatology BSSs remain fairly constant, but in April there is a notice-
able increase in skill, coinciding with the onset of the melt season. The sea ice concentration remains largely
unchanged from March to April across most of the Arctic, so this increase in skill comes from the atmo-
spheric predictors. With melt water appearing in late March and April, the Arctic's climate system adjusts
to accommodate these new conditions and is able to absorb more solar radiation, influencing local tempera-
ture and pressure gradients and therefore atmospheric circulation. FromMay through July, the climatology
BSS increases substantially, with the dominant source of predictability shifting to the sea ice concentration.
This coincides with more pronounced changes in sea ice concentration across the Arctic in the summer
months.

The forecasted total sea ice extents (calculated via the method described in section 3.3) show less accuracy
using January throughMarch predictors (particularly for extreme events), but skill increases with decreasing
lead time beginning in April. While years with extreme events pose challenges for this forecasting method,
there is potential for improved performance by simply including more observations as they become avail-
able, particularly as low extent years progressively become the norm. There will, however, always be a limit
on seasonal predictive accuracy due to variability in summer atmospheric circulation (Serreze &
Stroeve, 2015), a point that has historically received much attention in the literature (Lynch et al., 2001;
Maslanik & Stroeve, 1999; Serreze et al., 1995; Stroeve et al., 2012, 2008). In case studies depicting the impact
of variability in summer atmospheric circulation on minimum September extent, Serreze and Stroeve (2015)
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point out that yearly variations of temperature and wind direction strongly influence the dynamic and ther-
modynamic states of sea ice. Because summer weather conditions in the Arctic are highly variable (Serreze &
Barrett, 2008, 2010), seasonal forecasts of summer sea ice will always suffer. Additionally, recent studies
have shown that there may be a summer sea ice predictability barrier in spring for some Arctic regions
(Bonan et al., 2019; Bushuk et al., 2017; Day et al., 2014). By assessing general circulation model outputs,
these studies found a universal drop in prediction skill when models are initialized in May compared to
June, particularly in the marginal seas of the Arctic basin. Given these limitations, the probabilistic forecast-
ing method presented here provides accurate predictions, particularly at long lead times by utilizing the pre-
dictive power of wintertime geopotential heights and SSTs.

Data Availability Statement

All data used are publicly available from NASA (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_
access/) and NSIDC (https://nsidc.org/data).
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