Brokering architecture:

the ODIP prototype model views

OoODIP
Date 2018-05-27
Version 1.1
Enrico Boldrini, Fabrizio Papeschi, Mattia Santoro, Roberto Roncella,
Authors

Massimiliano Olivieri, Paolo Mazzetti and Stefano Nativi

Organization

CNR - Institute of Atmospheric Pollution Research, Florence Division

Document type

Technical Specification

Status

Draft

Dissemination

Public

Abstract

Brokering architecture: the ODIP model views

Keywords

ODIP, Brokering services, architecture design

Contact info

enrico.boldrini@cnr.it

URN

http://essi-lab.eu/Gl-suite/ODIP/BrokeringFramework

Brokering architecture:
the ODIP prototype model views 1

ESSI-lab
Florence Division CNR-IIA

This document has been drafted in the context of ODIP. ODIP has received funding from the European Union's
Seventh Framework Programme for research, technological development and demonstration under grant
agreement no [312492] and continued funding from the European Union's HORIZON 2020 Framework
Programme for Research and Innovation under grant agreement no [654310].

Document Date Status Author(s) Description
Revisions Version

1.0.0 2018-05-14 First version Boldrini First draft
1.1.0 2018-05-27 Nativi Revision
Brokering architecture: ESSI-lab

the ODIP prototype model views 2 Florence Division CNR-IIA

SUMMARY

SUIMIMIAIY e s e e e s e s e e e e eeesaaasaaasasssasasasssasssessssssseseesessssesesessssesneseesneneennenns 3
T dgoTe [V AT] o HUU O TP UPTOPPTO 4
SO ittt e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaanaaeaananns 4
(0] o [Tt 4 1YL= PPN 4
Technical specification MOGEL.........ooi i e e e e e e e e e e e ab e e e e e eareeas 5
ENTEIPIISE VIEW iiiiiiiiiiiiiiiiiieieeeieeeeee ettt e e e e e et e e et et e e e e e e e e e e e e e e e s e e e e e ee e e e e e e e e e e e e e e aeaeeeeeeeeeeeeeeeaeneeeeeneneneeees 6
ODIP COMMUNITIES ..vviiiiiiiiiiiiiie ettt e s sba e e e s sba e e e s sba e e e s sraeeessanes 6
ODIP BroKer COMMUNIEY ..vviiiiiiieeeieiiieesitieeeseiteeessteeeessbeeeessbeeeessbeeeessaseeeessseeeesssseeeesssseeessssseneessnse 8
(0]5] | 2 o To) =T ol o] o Yol L1 Y PP 8
ODIP DIOKET FOIES ... uttieiiieeiieeite ettt ettt et sb et et e st e et e e s bt e e sabeesabeesbeeesabeeesbteesabeesaseeesabeesase 12
INFOIMALION VIBW .cueiiiiiiiii ettt ettt ae e st et et e bt e s bt e saeesateebeesbeesbeesanenas 15
MeEtadata SCREMA ...couiiie ittt ettt e b e s b s e e st e ebeenbeesbeesaeeeas 17
SeMaNtics INFOrMATIONccuiiiee et s bbb 18
Data SCREMA. ...ttt ettt e s bt e st e bt e et e e s bt e e st e sbee s bteesbeeenars 21
(00T 0] oTU] =Y o o F= IRV L= PSPPSR 23
Interoperability APl COMPONENTS.....cccciiii e ceteee ettt et e e e eetee e e e bee e e esabee e e esabeee e esnraeaeennrenas 30

[o T ea T T=T=T TV = PPNt 32
B =Tol T aYoY[oT=4Tor=Y Y/ =Y RPN 35
DiISCUSSION. ..ttt st b e s a e st s a e r e e s ba e sreeeans 36
(000] o1 = [l o o T 1 o} £ J O PO PT P RTPPPPPPTTN 36
RETEIEINCES ...ttt sttt et e bt et e s bt st e bt e bt e b e e s beesmee st e enneereesneesane e 37
Brokering architecture: ESSI-lab

the ODIP prototype model views 3 Florence Division CNR-IIA

INTRODUCTION

Scope

The rationale of this document is to create a formal documentation of the Brokering architecture,
proven successful in ODIP prototype 1+, as well as in several other real-world and prototype use
cases, to serve as a best practice. Wider recognition and interest in the functionalities of this
middleware (which is transparent by its nature) are expected as an outcome of this publication.
ODIP Prototype 1+ (in the context of the Ocean Data Interoperability Platform Coordination and
Support Action of the EU Research Infrastructures programme) aims at implementing
interoperability between the following autonomous and distributed systems: SeaDataNet CDI, US
NODC, and IMOS MCP. The prototype demonstrates data discovery and access services using a
brokering middleware that is utilized by a couple of Web-portals:the global IODE-ODP and GEOSS
portal.

Global Users

Figure 1 ODIP prototype 1+

Objectives

The objective of this technical specification is to formally describe the architecture of a multi-
organizational brokering system, focusing on the ODIP broker system implemented for the ODIP
prototype 1+.

Brokering architecture: ESSI-lab
the ODIP prototype model views 4 Florence Division CNR-IIA

This specification describes the adopted brokering platform according to the RM-ODP viewpoints
framework formalism, in which different views are used to represent the whole system from the
perspective of a related set of concerns.

Technical specification model

A viewpoints framework formalism, such as the ISO Reference Model of Open Distributed Processing
(RM-ODP), is commonly used for formally describing complex distributed software systems
according to simpler transversal viewpoints. In such formalism, different views are used to represent
the whole system from the perspective of related set of concerns.

The RM-0DP is a well-known viewpoints framework formalism compliant with IEEE 1471 freely
available as I1SO standard [1]. Both RM-ODP and the UML40DP [2] standards have been taken into
account in drafting this document.

To the aim of describing the ODIP brokering framework the following viewpoints will be considered,
each one composed by a set of related concerns:

e Enterprise: purpose, scope and policies governing the activities of the specified system
within the organization of which it is a part;

e Information: the kinds of information handled by the system and constraints on the use and
interpretation of that information;

e Computational: the functional decomposition of the system into a set of objects that
interact at interfaces — enabling system distribution;

e Engineering: the infrastructure required to support system distribution;

e Technology: the choice of technology to support system distribution.

Brokering architecture: ESSI-lab
the ODIP prototype model views 5 Florence Division CNR-IIA

ENTERPRISE VIEW

The enterprise view is used to model the purpose, scope and policies governing ODIP brokering
prototype. The specification tries to formalize the actors, requirements and objects extracting and
refining them from the real-world prototype. This view describes both the high level interworking of
ODIP broker prototype, and the high-level enterprise patterns for future similar real-world contexts.

ODIP Communities

The ODIP broker system enterprise specification represents the different Communities composing
the ODIP prototype ecosystem. Each Community is characterized by its specific role, policy and
enterprise objects). The recognized Communities are:

e Regional marine communities: one community for each ODIP participating organization
(e.g. SeaDataNet, AODN IMOS, NODG, ...), each community including at least actors with
roles of point of contact, developers of data services, developers of semantics services,
developers of community portals, community users

e International data communities: one community for each international program of interest
(e.g. IODE, GEOSS), each community including at least actors with roles of point of contact,
portal developers, portal users

e ODIP Broker community: it includes broker point of contact, administrators and developers

e Steering community: it includes ODIP prototype 1+ principal investigator, technical
committee with members from the other communities

Brokering architecture: ESSI-lab
the ODIP prototype model views 6 Florence Division CNR-IIA

«Enterprise_Spec»
ODIP broker system

Enterprise Objects (global)

«EV_ComlmunityObj.e--- «EV_Community Object»
ODIP steering committee Regional marine community
«EV_CommunityObject» «EV_Community Object»
ODIP broker International data community A

T
I
I
]

1
«EV_RefinesAsCommunity»
I

«E\."_CommunityCc:ntract»

ODIP broker :

V

2]

«EV_Community»
ODIP broker

Figure 2 Enterprise specification of the ODIP prototype 1+

As depicted in Figure 2, different communities take part in the system, because of its distributed and
multi-organizational nature, involving several heterogeneous systems..

Each community is characterized by its: stakeholder roles, enterprise objects, and policies. Besides,
a Community has a whole community objective to be considered for the brokering success —in the
specification, this is formalized by one class (stereotyped <<EV_Objective>>) which has a tagged
value that express the community objective.

This document covers the ODIP broker Community and the actors from the other Communities that
interact with it —see Figure 3.

Brokering architecture: ESSI-lab
the ODIP prototype model views 7 Florence Division CNR-IIA

«EV_CommunityContract»
ODIP broker

To allow harmonized discovery and
access of marine data published by
digributed and heterogeneousdata
srvices, each of them maintained by a
specific ODIP data provider. The ODIP
broker implements the requirements
coming from the ODIP prototype 1+
seenng committee, including brokering
new providers, publishing new service
interfaces, extending the metadata model |- .
to add new queryablegfilters.

«EV_Community»
ODIP broker

«EV_ObjectiveOf»

«EV_Object»
ODIP broker
objective

Roles Policies ODIP broker Enterprise Objects

Figure 3 ODIP broker community

ODIP Broker Community

ODIP broker community general objective is to allow harmonized discovery and access of
marine data published by distributed and heterogeneous data services, each of them
maintained by a specific ODIP data provider.

The ODIP broker implements the requirements coming from the ODIP prototype 1+ steering
committee, including brokering new data/semantics providers, publishing new service
interfaces, extending the metadata model to add new queryables/filters and so on.

ODIP broker processes
Processes specify the behavior in terms of (partially ordered) sets of steps, and are related to
achieving some particular sub objective within the community.

The processes of the ODIP broker community are expressed by a set of activities stereotyped as
<<EV_Process>> that have the component that expresses it as their context, as shown in Figure 4.

The source for these requirements are the ODIP Il deliverable D3.1 [3] and they include:

e Harmonized discovery: seamlessly query heterogeneous sources of marine information and
obtain results in a common data model

Brokering architecture: ESSI-lab
the ODIP prototype model views 8 Florence Division CNR-IIA

e Semantically enhanced discovery: obtain enhanced query results by expanding user query
terms from regional marine vocabularies recurring to a semantics service (i.e. Rosetta Stone
web service). Required vocabularies to support, at least:

SDN:P02

SDN:EDMO

AODN:parameter

AODN:platform

NERC:PO1

NODC:datatype

o NODC:platform
e Filters/Facets discovery: faceted search consists in presenting the actual values

o O O O O

documenting a specific metadata element in a set of resources, to the aim of having the user
select one of the values to act as a result set filter

e Paging: to browse big results sets page by page

e Ranking metrics: to have results order by importance (definition of importance based as a
customizable formula, dependent on query matching score and quality of results score)

e Broker new data source: to add a regional data service as an additional source of discovery
and access by means of the ODIP broker. Required sources at least:

o AODN IMOS (CSW/ISO-MCP service protocol)
o US NODC (CSW/ISO-NODC service protocol)
o SeaDataNet (ISO-CDI service protocol)

e Add discovery/access service interface: to publish an additional standard discovery or

access service by the ODIP broker. Required at least the ones needed to connect with:
o GEOSS portal
o |ODE ODP portal

e Broker ontology provider: to access semantics capabilities of a given semantics service (e.g.
Rosetta Stone semantics capabilities)

e Harmonized access: seamlessly access heterogeneous marine data sources to download
data in common standard formats and having it transformed by means of simple
transformations (e.g. data format conversion, crs reprojection, interpolation, subsetting)

e Add simple transformation: to add a specific simple transformation (e.g. EPSG:4326 to
EPSG:3857)

e Add queryable metadata element: to make a specific metadata element to act as a
gueryable (to use it for discovery). Required to be supported at least:

o Instruments (how)

o Platforms (how)

o Data originators (who)
o Bounding box (where)
o Time interval (when)

o Add filter metadata element: to make a specific metadata element to act as a filter for the
faceted search. Required to be supported at least:

o Instruments (how)
o Platforms (how)

Brokering architecture: ESSI-lab
the ODIP prototype model views 9 Florence Division CNR-IIA

o Data originators (who)
o Bounding box (where)
o Time interval (when)
e Connect through interoperability API: to make available an Application Programming
Interface to make it easy for a web portal developer to connect to ODIP broker
functionalities

From this list of processes, other important system requirements emerge.

e Flexibility: to be able to support existing and emerging standard

e Modularity: to easily support extensions through additional modules (opposite to a
monolithic architecture)

e Rich and extensible data model: to accommodate most common information (and also
community specific and additional information)

«EV_Community»
ODIP broker
\
«EV_Process» «EV_Process» «EV_Process» «EV_Process» «EV_Process»
Broker new data source Add discovery/access Broker ontology provider Harmonized discovery Semantically enhanced
service interface discovery
. J . > AN v
«EV_Process» «EV_Process» «EV_Process» «EV_Process» «EV_Process»
Add queryable metadata Add filter metadata Add simple transformation Filters/Facets discovery Harmonized access
element element
\ AN N AN g\ %
Figure 4 ODIP broker processes
Each of these activities it is associated to an Activity Diagram expressing the process steps and
identifying the different roles (either as actor or as artefact roles). For instance, the basic process to
Broker a new data source is detailed in Figure 5.
In the Broker a new data source process, the behavior of the ODIP broker role is defined by the
actions in the activityPartition for the ODIP broker role. While, the complete behavior of the ODIP
broker role is the composition of its behaviors in all of the processes in which it is involved.
Brokering architecture: ESSI-lab

the ODIP prototype model views 10 Florence Division CNR-IIA

«EV_Role» Principal investigator

«EV_Role» Point of Contact

«EV_Role» Administrator [

«EV_Role» ODIP broker

l

«EV_Role» Developer

«EV_Stepn

State broker source
requirement

additional source:
High level request

EV_Stepy

Formulate

technical
request

additional source:
Technical request

o SV steps updated ODIP

of
updated ODIP
broker instance

broker: Software

&V Stepr
Configure ODIP
broker with
additional source

«EV_Step»

ladditional accessor:

Technical request

EV_Stepn

Add a source
Implement additional
laccessor component for
the new source type

«EV_Step»
Compile
development
request

[not supported]

[supported]

&V Stepn

«EVStepn Implement enhanced
Test ODIP broker accessor component
with respect to
additional source

«EV_Stepn
Test a source

brokered source
report: High level
report

brokered source
report: Technical
report

[success]

brokered source
report: Technical
report

«EV Stepn
Receive brokered
source report

Figure 5 Broker a new data source process

2

«EV Stepn
Formulate
pubilc report

[problems]

EV_Stepn
Compile
development
request

accessor:
Technical request

The process starts with the ODIP Principal investigator performing the step State broker source
requirement. This step is commonly triggered by previous steps occurred in the other community
activities, such as:

e directly taking as an input a requirement expressed in ODIP deliverable D3.1 [3]

e regional data provider had requested to be part of ODIP broker prototype, by applying with
a data service to be brokered; the ODIP steering committee had to accept the request and as
a consequence the Pl formulates the broker new source requirement.

This first step implies that a High level request (enterprise object) has come into existence, and this
fact is modelled by an artefact of High level request expressed as an objectFlow, named in the
model additional source which has type High level request.

The Point of contact (a role filled by a member of the ODIP broker community), next performs the
step Formulate technical request, which references, as an artefact, the enterprise object Technical
request (named additional source), which is a translation, in the technical language spoken by the
ODIP broker community, of the first request.

The remainder of Figure 5 is largely self-explanatory and is not detailed further in textual form,
except for the general idea: the Administrator steps include re-deployment of software updates
coming from the Developer(s), configuration and testing of the ODIP broker, compiling
development requests for enhancement of the ODIP broker system.

The Point of contact role acts as a gateway between the ODIP broker community and the others,
translating incoming requests and out coming reports from a technical language to a high level

ESSI-lab
Florence Division CNR-IIA

Brokering architecture:

the ODIP prototype model views 11

language. A single actor can as well play both the Point of Contact and the Administrator roles in
the real-world case.

The Developer steps with regards to this process include implementing additional/enhanced
accessor components.

ODIP broker roles

Figure 6 shows ODIP broker roles within the package that contains the specification of the
community, associated to a realization link to the component that expresses the community. The
behavior identified by a role is expressed by the set of behavioral features of the class that expresses
the role. Example given, it follows a (partial) list of behavioral feature for the identified roles in the
ODIP broker community:

e Point of contact
o receives requests: the ODIP prototype 1+ steering committee can formulate
requests to the ODIP broker point of contact, e.g.:
= brokering of new data/semantics providers
= enhancement/fix of the current version of ODIP broker implementation can
be requested as well
The point of contact can accept (providing an estimated time for completion) or
refuse a given request, based on technological implications
o delegates brokering request: incoming requests are delegated to the broker
administrator for implementation
e Administrator
o deploys broker: the administrator is responsible to deploy an instance of the ODIP
broker system on a given infrastructure (e.g. to a cloud infrastructure)
o configures broker: the administrator is responsible to configure the broker to
implement an incoming request
o tests a configuration: the administrator conducts tests to assure that the brokering
has been successfully completed as expected
o delegates development request: the administrator can delegate a request involving
software development to developers
o provides support: the administrator provides support to ODIP broker users
e ODIP broker (system)
o brokers source: configure an accessor instance for brokering a specific source
o publishes interface: publish the specific service interface
e Developer(s)
o implements enhancement/fix: the developer is in charge of developing new ODIP
broker software components or to patch existing ones

Some of the roles can of course be interpreted by the same actor (e.g. point of contact and
administrator).

Brokering architecture: ESSI-lab
the ODIP prototype model views 12 Florence Division CNR-IIA

«EV_Role»
Point of contact

P

-
-

«EV_Rolex

Administrator «EV_CommumtyBehg\ﬂor»

«EVﬁCommum@Bhehawor» - gl
«EV_Community»
_---1A ODIP broker

«EV_Rolex -
Developer - «EV_CommunityBehavior»
«EV_CommuEityBehavior»
«EV Rder |~
ODIP broker

Figure 6 ODIP broker community roles

It is useful to highlight the more important roles existing in the other communities and interacting
with the ODIP broker system or with the roles of its community.

From the Steering committee Community, the following roles are identified (along with a partial list
of associated behavioral features):

e Principal investigator
o formulates high level requests: the Pl submits high level requests (e.g. broker a new
source — from DOW) to the Point of contact in the ODIP broker community.
o receives high level reports: the Pl receive high level reports from the Point of
contact in the ODIP broker community, as a result of previously submitted request

From the Regional marine Community, the following roles are identified (along with a partial list of
associated behavioral features):

e Data service (system)

o receives harvest requests: the ODIP broker submits harvesting request to inventory
data provider services, in order to retrieve all the available metadata content in
order to optimize subsequent user searches.

o receives discovery requests: the ODIP broker submits discovery request to real time
data provider services, in order to retrieve all the available metadata matching user
searches at real time.

e Semantics service (system)

Brokering architecture: ESSI-lab
the ODIP prototype model views 13 Florence Division CNR-IIA

o receives semantics queries: the ODIP broker submits semantics queries to
semantics services (e.g. Rosetta Stone), in order to retrieve semantics related terms
from a in input term selected by the user.

e Community app (system)

o submits discovery web requests: a community app submits discovery web requests
using protocols implemented by the community data services. The ODIP broker can
transparently reply as well to such requests, as long as it is implementing the
required service interface.

e Community end user

o searches through a community app: a marine community end user is a person who
discovers marine resources using a community application (and community defined
vocabularies). He/she is not necessarily aware of the existence of the ODIP broker.

From the International data Community, the following roles are identified (along with a partial list of
associated behavioral features):

e Web portal (system)

o submits discovery web requests: the portal submits a discovery web request
(determined by user interacting with the portal Ul) to a discovery web service
interface published by the ODIP broker.

e Web portal end user

o searches through the international portal: an international portal end user
discovers marine (but not only) resources from international data sources using an
international portal. He/she is not necessarily aware of the existence of the ODIP
broker.

Brokering architecture: ESSI-lab
the ODIP prototype model views 14 Florence Division CNR-IIA

INFORMATION VIEW

The information viewpoint deals with the system information modelling. This information
specification defines the semantics of information and the semantics of information processing in
the ODIP brokering prototype, independently from: its implementation, the computational process,
and the nature of the distributed architecture used.

Figure 7 shows the full information specification of the brokering system, consisting of several
interconnected packages that contain sets of information objects. The information packages are:

e Core: common objects handled by the brokering system, such as: Resource, Resources
Collection, Source, RelationType

e Query & View: needed to realize discovery and views, such as: User, and Query (including
Constraint), Request, View

e ResultSet: results of discovery, such as: ResultSet, CountSet, ElementValueFrequency

e Metadata: describing resources, such as: MetadataElement (Core, Augmented, Extended),
OriginalMetadata, Identifiers

e Semantics: semantics related objects, such as: Ontology

e Service: to model different geo information services, such as: Service (Access, Discovery,
Processing)

e O&M: to model concepts from Observation and Measurement model, such as: FOI,
Observation, Sensor

e Dataset: to handle information needed to realize access, such as: Dataset, Encoding,
Thumbnail, Variable

e BP: to handle information for the execution of business processes, such as: BP, Workflow,
EnvironmentalModel

e Document: to handle descriptive resources

Some of these packages contains information objects needed to implement specific enterprise
requirements that are beyond the ODIP experimentation (e.g. Business Processes management,
Documents management packages).

For the scope of this document, this view focuses on the semantics (i.e. main information aspects)
characterizing the elements identified in the enterprise view (see the Enterprise view):

e Metadata elements schema
e Data elements schema

Brokering architecture: ESSI-lab
the ODIP prototype model views 15 Florence Division CNR-IIA

«Information_Specs
ODIP broker system

Query&View

+ Authorized User

+ Constraint

+ Freguency

+ Gl-suite Dizcovery Query
+ Glsuite Reguest

+ Normalized Gl-zuite Query
+ Reduced Ghsuite Query

+ Subscripiant Result Set

+ Subscription

ResultSet

+ Count Pair

+ Count Set

+ Element Walue Freguency
+ Index

+ Ranking Schema

+ Ranking Values

+ Result Set

Semantics

+ Knowledge Mapper
+ Knowledge Recognition
+ Ontology

(from Broif‘A' data model)
f

Metadata

I

+ Results Page
+ Weight

(from Broker data model)

Service

(from Bmkeri data model)
|

Core

+ Annotation MD Element

+ Augmented MD Element
+ Augmented Representation Option MD Element

+
(=]
3
S
=
m
@
|
e
El

+ Extended MD Element

+ Gl-suite Private ldentifier
+ Glauite Publilc identifier
+ Harmonized Meatadata
+ Metadata Element

+ Metadata Mapping

+ Original Identifier

+ Original Metadata

+ Policy MD Element

+ Resource ldentifiers

~+ Server Representation Option MD Element
-

S~ - (from Broker data model)
=

)
Document

+ Document

=
= -
+ Access Service FUREIIETS
+Discovery Service [fm T T T T T T T T T TTT T e poseesesE,
)) + Resources Collection =
+ Processing Service =il
+ Service -1 SEIES
=i - =
-7 front Broker data todel)
(from Broker data model) P {zonbicheca & &) . . [=d
- 4 \ =
- i =
2T / K \
0&M 1% \ =
+Fol Dataset | v
+ Observation + Dataset
=i
FEEIELT + Encoding Model Mapping i
=] + Harmonized Encoding Model = +BP
(from Broker data modei) . . « Envi tal Model
+ Original Enceding Model nvironmental Model
+ Thumbnail + Transformation WF
+Tile Set + Workflow
+Variable
(from Broker data model)

(from Broker dats modsl)

(from Broker data model)

Figure 7 Structure of the information viewpoint specification of the full brokering system

Actions have been identified from processes expressed in the Enterprise View and using the related

information objects (Figure 8 provides an excerpt of these).

For this viewpoint, the information actions are expressed using a package that expresses the
invariant schema that specifies the action types supported by the information objects of the system.

«IV_InvariantSchemas»
InformationActions

«signal,IV_Action»
brokerNewDataSource

+ s :Source

+

«signal,IV_Actiony «signal,IV_Action»

harmonizedDiscovery harmonizedAccess

r :Gl-suite Discovery Request + r :Gl-suite Access Request

Figure 8 ODIP broker actions (excerpt)

Brokering architecture:

the ODIP prototype model views

16

ESSI-lab
Florence Division CNR-IIA

Metadata schema
The metadata view concerns the information objects related to the discovery use case (harmonized
discovery of metadata records from heterogeneous sources).

«IV_InvarigntSchemas
MetadataObjects
See the GEOSS Yellow
Page service
SR xSevern -

publishes .-
interfaces = Core:Source | .-~
Service:Discovery Service| ~ See ISO 19139
Semantics::
A A Knowledge ~
Mapper S
ko Metadata::Core
mappedTo [| MDElement
ts publishes
&g 0.+
wprocedures. Metadata::Policy MD
Can be Metadata-Metadata «Descriptor Records ~ 3 o Element
Personalised mapsTo e Element 1 (eeendediiey
0L - = S Element
; L H Metadata:: Server
0 A «Metadata Sche... h «Metadata Schem... 51,77 Representation Option
- Original s i 0= MD Element
- Metadata mappedTo Meatadata Metadata::
sprocedurss |~ ™| Augmented MD A
Semantics:: | definedBy Element :
Knowledge]
Reocanilige) desmribedBy deshie iy Metadata::Augmented
- |Representation Option
| | Metadata: - WD Element
0. 1.0 Annotation MD
\Jf «Linkagex relation Elomant ¢1
hasType ! 0.* Workdlow
«Domain Mol Core::RelationType ——
Semantics: “cﬂf-n;iﬂltl” «#Sharsble Entitys «procedures.
Ontology k3 Core:Resources Collection BP::Transformation
WF
| 1.= T
S :
Can be
3 Fersonalised
sDescriptor Records
Metadata:Resource
Identifiers
xDesariptor Rec.. xDesaiptor Re.. «Desoriptor Records
Metadata::Original Metadata::Gl-suite Metadata::Gl-suite
Identifier Publilc Identifier Private Identifier

Figure 9 Metadata information view

The Source information object describes an organization (according to GEOSS Yellow Pages content
model) publishing one or more Discovery Services.

Through Discovery Service it is possible to obtain a set of Original Metadata objects, documenting
data provider Resources, according to the original metadata model implemented by a specific
discovery service type. The currently brokered ODIP discovery services implements the following

original metadata schemata:

e SeaDataNet: CDI profile [4] [5] of ISO 19115
e AODN IMOS: MCP profile [6] of ISO 19115
e US NODC: NODC profile of ISO 19115

Other common metadata information models implemented by other discovery services are:

e Dublin core;

Brokering architecture: ESSI-lab
the ODIP prototype model views 17 Florence Division CNR-IIA

e DIF;

e Atom;
e RSS;
e O&M.

All these metadata schemata are in general composed by a set of metadata elements, defined and
encoded by metadata technical specifications.

The information content held by Original Metadata is mapped through a Metadata Mapping
procedure to a Harmonized Metadata object, holding a translated description of the original record
according to the Broker internal metadata model. Each different original metadata record is mapped
to a correspondent Harmonized Metadata object, making possible a harmonized discovery.

The Harmonized Metadata object is further composed by a set of Metadata Element that can be
used to describe the metadata object element by element. They can have different types:

e Core MD Element: Based on the ISO 19115 comprehensive profile metadata model,
composed by more than 300 metadata elements described by the ISO standard [7].

e Extended MD Element: An extension point to hold custom information elements defined by
a particular community.

e Augmented MD Element: These are elements created or updated as a result of a batch
augmenter procedure (e.g. a batch procedure exists to test the access of remote datasets
and updates the metadata object with the information provided by the access test results)

e Annotation MD Element

Semantics information

Specific metadata elements can be documented with terms from community based controlled
vocabularies. As an example, let’s consider the measured attribute (or parameter) sea level, a
common measured attribute well known across the ODIP communities, but differently documented
by each of them.

The following figures Figure 10, Figure 11 and Figure 12 show how the different communities
document the same measured attribute element. In general terms, each community use different
metadata elements to store this information. The information content is the term for sea level as
expressed by a specific community controlled vocabulary.

Brokering architecture: ESSI-lab
the ODIP prototype model views 18 Florence Division CNR-IIA

«IV_StaticSchemas
AQDNSeal evelMetadataElement

«V_Objects
HarmonizedMetadata

Source
ol_Objects «V_Dbjects
AODN [om2:OriginalMetadata | maps =
+ endpoint = hitp./idata.nod + metadata :any = metadata? +

Through mapping

coreMetadata -gmiM|_Metadata = metadatai

extendedhletadata

procedure an
«l_Objects OriginalMetadata
metadata2 : mcp:MD_Metadata mapsto an

HarmonizedMetadata

+ gmdidentificationinfo :mcp:MD_Dataldentification = identificationinfo2

#V_Objecty
metadatat : gmi:MI_Metadata

gmd:contentinfo :gmd:MD_CoverageDescription = coverageDescription

«V_Objects
2 : mcp:MD_D:

+ mcp:dataParameters :mcp:DP_DataParameters = dataParameters2

«V_Objects
coverageDescription1 :gmd:MD_CoverageDescription

gmd:attributeDescription :gco:RecordType = recordType1

«_Objects
dataParameters2 : mcp:DP_DataParameters

+ mcp:dataParameter :mcp:DP_DataParameter = dataParameter2

V_Objects
recordTyped : gco:RecordType

«_Objects

content :String = Sea surface hei..
href :URL = hitp.//vocab.ao.

dataParameter2 : mcp:DP_DataParameter

+ mcp:parameterName :mcp:DP_Term = parameterName2
+ mcp parameterlnits

s
«IV_Objects S
parameterName2 : mcp:DP_Term ,’ /’
s
+ mcpiterm :String = Sea surface hei.. ¥ /’
+ mcpitype :mcp:DP_TypeCode = longName s

+ mepvocabularyTermURL -gmd URL = hitp:/ivocab.ao

the Sea Level
parameterismapped
(both identifier and

descriptive label find
place)

Figure 10 Documentation of Sea Level measured attribute in AODN co
correspondent metadata harmonization by the broker

mmunity and its

AODN community has drafted 1ISO-19115 community extensions (extended elements) to

accommodate the semantics for the measured attribute.

«lV_Objects
HarmonizedMetadata

coreletadata :gmiM|_Metadata = metadata’

extendedMetadata

«lV_Objects
metadatat : gmi:M|_Metadata

gmd:contentinfo gmd:MD_CoverageDescription = coverageDeseription |

«lV_Objects
VET: iption1 :gmd:MD_Cover:

gmd:atiributeDescription :geo:RecordType = recordTyped

«lV_Objecta
recordType1 : gco:RecordType

content :String = Sea level
href URL = hitp./? sead.

«V_StaticSchemas
lement
Source
«l_Objects «V_Objects
e == om2: OriginalMetadata | ___mas o)

+ endpoint = hitp://data.nod + metadata -any = metadata2 .
Through mapping +
procedure an

lV_Objects OriginalMetadata
metadata? : gmc:MD_Metadata TOemeT
+ gmd:identificationinfo -sdnSDN_Dataldentification = identificationinfo2 HamonizedMetadata
oV_Objects
2 : sdn:SDN_D:
+ gmd:descriptiveKeywords gmd:MD_Keywords = descriptiveKeywords2
#_Objects
descriptiveKeywords2 : gmd:MD_Keywords
+ gmd-keyword -sdn:SON_ParameterDiscoveryCode = keyword2
_-7:
«V_Objects maps- T =
keyword2 : sdn:SDN_ParameterDiscoveryCode - -
Pite maps ~
+ content :String = Sea level I~ -
+ codelistValue :String = ASLV - -
+ codeSpace String = SeaDataNet -
+ codelist :URL = hitp:ifvocab.ne

the Sea Level parameter is mapped
iboth identifier and descriptive label
find place)

Figure 11 Documentation of Sea Level measured attribute in SeaDataNet community and its

correspondent metadata harmonization by the broker

Brokering architecture:
the ODIP prototype model views 19

ESSI-lab
Florence Division CNR-IIA

The SeaDataNet community has drafted ISO-19115 community extensions (extended codelists) to
accommodate the semantics for the measured attribute.

+IV_StaticSchemas
NODC SeaLevelMetadataElement

Source

«IV_Objects «IV_Objects «IV_Objects
NoDe = om2 : OriginalMetadata maps | HarmonizedMetadata

¢ SRt e + metsdsta :any = metsdata? + corshetadata :gmi:MI_Metadata = metadata1

+ extendedMetsdats

Through mapping

procedure an

«IV_Objects 5
metadsta? : gmi:MI_Wetadata
:;ﬁ:: izedMetadata «IV_Cojects
+ gmd:identificationinfo :gmd:MD_Dataldentification = identificationinfa2 metadatat : gmi:MI_Metadata

+ gmd:contentinfo :gmd:MD_CoverageDesaiption = coverageDesaiption1

«IV_Objects

gmd:D_D:

«IV_Objects

+ gmd:desciptiveKeywords igmd:MD_Keywords = desariptiveKeywords2
e coverageDescription :gmd-MD_CowerageDescription

+ gmd:athibuteDesciption gooRecordType = record Typel

«lV_Objects

descriptiveKeywords2 : gmd:MD_Keywords

+ gmdkeyword ;gmuxAnchor = keyword? «IV_Objects
recordType1 : gco:RecordType

+ oontent ‘Sting = SEA LEVEL
+ href :URL = hitps://www.nod...

«IV_Objects maps. =~ =
Keyword2 : gmx:Anchor - =

¢ I Sy S EssLanEk i - the Sea Level parameter is mapped
& href (URL = hitps: /.o -

- {both identifier and desaiptive label
- find place)

Figure 12 Documentation of Sea Level measured attribute in NODC community and its
correspondent metadata harmonization by the broker

The NODC community has used the web content mechanism of web anchors, defined in ISO 19139
to accommodate the semantics for the measured attribute.

So, just for the measured attribute information element we have found three different ways of
encoding its content (even if using the same general framework of ISO 19115). Each of them has its
reasons to exist and is perfectly valid inside each community. It’s responsibility of the broker to
extract the measured attribute information from the different OriginalMetadata instances and map
them to an harmonized metadata element in the HarmonizedMetadata document. The broker in
this case uses the attributeDescription element from the comprehensive profile of ISO 19115,
containing both a descriptive label and an identifier.

The identifiers are particularly important, as they are the primary means of identifying concepts in a
semantics service, such as the ODIP Rosetta Stone. Rosetta Stone provides an ontology linking the
concepts from the ODIP vocabularies, documenting them with the same identifiers that are present
in the HarmonizedMetadata class, making thus possible for the broker to semantically augment the
searches.

Figure 13 shows an example, for the measured attribute sea level, of the concepts present in Rosetta
Stone service along with their relations. Rosetta Stone implements this way a common ontology for
ODIP, linking terms from vocabularies of the different ODIP communities through common relations,
such as owl:sameAs, skos:narrower and skos:broader.

Brokering architecture: ESSI-lab
the ODIP prototype model views 20 Florence Division CNR-IIA

«IV_StaticSchemas

Rosetta SealevelConcept

«_Onjects

<http:/iwww.seadatanet.org/urnurl/SDN:P02:ASLVI= : Concept

Concept

Concept
==5ameAs=>
alV_Dbjects
<https:/iwww.nodc.noaa.govicgi-bin/OAS/prd/datatypeldetails/312= : Concept
<<gameAs>> <<gameAs==
Concept
alV_Dbjects

<http:/ivocab.aodn.org.au/defldiscovery_parameter/entity/643>= : Concept

Figure 13 Rosetta Stone ontology (excerpt)

Data schema
The data view concerns the information objects related to the access use case (harmonized access of

data from heterogeneous sources).

«[V_InvariantSchemas

defined as a CF Standard name

represemsy

«Porraits

Dataset:Tile Set

*

CRS :enum
grid :seqOfint

DataObjects
zLinkage= relation
Core:RelationType | - e l
«Sharable enfitys
'J Core::Resource
hasType
[
See Q&M
zinterfaces =Domain Models =« Contents «Processs
Service:: Semantics::Ontology Dataset: O&M::Observation
Service Dataset
_ =
- generates__ — =
A =7 - _ Aﬁ_. —————————— R 1%
e I K
PRt B
zinterfaces ! encqdedAs generatedBy observes
Service:zAccess : encodedAs
Service [
1
1 =Data Formate mappedTo =netCOF-CF Datasets zInstruments «Phenomenons
l Dataset:Original Dataset:Harmonized O&M:Sensor O&M:FOI
: Encoding Model g Encoding Model
1 e .
1 ’ S
1 %o,
| aprocedures .
| Dataset:Encoding 1%
| Model Mapping - See netCOF CDM
: «netCOF eleme .
S O e o o e e e e e e Dataset:Variable

representedBy
0.*

=P orfraits
Dataset:
Thumbnail

Figure 14 Data information view

Brokering architecture:
the ODIP prototype model views

21

ESSI-lab
Florence Division CNR-IIA

An Access Service can publish Datasets and Observations, which are subtype of the Resource
object. In general, an Observation generates a Dataset with a link back to its Observation.
Observation is generated by a Sensor and observes a specific Feature Of Interest.

Also in the access case, datasets are encoded according to Original Encoding Models, that are in
general different, according to the access service implementation (e.g. 0&M, GeoTIFF, CSV, ...). An
Encoding Model Mapping procedure is used by the broker to map the different encodings to an
Harmonized Encoding Model object, based on NetCDF-CF data model [8], hence composed by a set
of Variables (possibly represented by Tile Set and Thumbnails when a graphical overview can be
generated). Harmonizing all the heterogeneous data information content to NetCDF-CF makes it also
easier to subsequently apply simple transformations on the harmonized data model (such as subset,
CRS reprojection, etc.).

Brokering architecture: ESSI-lab
the ODIP prototype model views 22 Florence Division CNR-IIA

COMPUTATIONAL VIEW

The computational viewpoint deals with functional the decomposition of the ODIP prototype system
in distribution transparent terms. This computational specification defines units of function as
computational objects (expressed as components), and the interactions among those computational
objects, without considering their distribution over networks and nodes.

«CV_Objects «CV_Objects «CV_Objects
Web portal ODIP broker |:—[I r Data service
. '@ L]
@ eratjoninterfaces
L] O CV_Op Interfac
) \‘ V_Operationinterfaces Discoveryintgrface «CV_Opergtioninterfaces
«CV_Opgrationinterface» scoverylnterface Discoverylnterface
Discoverylnterface
1 7 i
‘" r
[~ L _ [1 © L]
«CV_0Operafioninterfaces K.V_O;laetra;rlonlmerface»
Accessinterface cessinterace «CV_Operatipninterfaces «CV_Operationinterfaces
Accessinterfjce Accesslntgrface
EI «CV_Objects
«CV_Objects Semantics service
Web configurator
[} e]
- = L
«CV | Operationinterfaces [j @ E]
CV_Operationinterface» Configurationinterface .
onfigurationinterface) «CV_Opefationinterfaces
«CV_Opdrationinterfaces R [Eoriace
Semantigsinterface

Figure 15 Component diagram highlighting macro components of the ODIP broker system

The component diagram in Figure 15 shows the macro components of the ODIP broker system.
These are:

e ODIP broker: the main component

e Web portal: a community web portal, interacting with the ODIP broker through discovery
and access interfaces

e Data service: a community data service, accessed by the ODIP broker through discovery and
access interfaces

e Semantics service: a semantics service, accessed by the ODIP broker through semantics
interface

e Web configurator: used to configure the ODIP broker system through requests to its
configuration interface

Brokering architecture: ESSI-lab
the ODIP prototype model views 23 Florence Division CNR-IIA

InterfaceSignatures

«CV_0Operatoninte face Signatures
Configurationinterface

<CV_OperationintefaceSignatures
Discoverylnterface

+ brokerSource(Source) void
brokerSemanticsSenice(Source) void
publishinterface(InterfaceType) void

+

N

= CV_OperationinterfaceSignature=
OAI-PMH

+ listMetadataFormats() :ListMetadataFormatsResponse
+ listRecords(MetadataFormat) :ListRecordsResponse

OWS Interface

= CV_0Operafoninterface Signatures
OGC Csw

+ getCapabiliies() :CapabilitiesDocument
+ getRecords(GetRecordsRequest) ‘GetRecordsResponse

<CV_OperationinterfaceSignature »
A rface

OWS Interface

<CV_Operationinterface Signatires
OGC S0S

+ getCapabiliies() :CapabilitiesDocument
+ describeSensor{ldentifier) :SensorDescription
+ getObsemnvation{ldentifier, Parameters) :Observation

«CV_Operationinteface Signatures
OpenSearch

OGCWCS

+ query(SearchTerm, Page, Facet, View, SemanticsOptions) void

OWS Interface
«CV_OperafonintefaceSignature=

=«CV_OperationinterfaceSignatures
OPeNDAP

+ getCapabilities() :CapabilitiesDocument

+ describeCoverage(ldentifier) :CoverageDescription
+ getCoverage(ldentifier, Parameters) :Coverage

+ getASCII(Variable, Indexes) ASCI
+ getBinary(Variable, Indexes) :Binary

Figure 16 Interaction signatures (excerpt)

Object interfaces are expressed as component ports, the components interact with each other at

computational interfaces (port instances). Each port is of a particular type and implements or uses

several interfaces (which express the corresponding interface signatures shown in Figure 16). They

are all operation interface signatures.

The identified interfaces (from the requirement captured by the enterprise and information

specifications) are:

e Configuration interface: containing operations to configure the ODIP broker to the required

scenario

o Discovery interface: containing operations to discover resources. This abstract interface is

specialized by many different discovery interfaces. Amongst them, example given:

o OAI-PMH [9]: The Open Archives Initiative Protocol for Metadata Harvesting
(referred to as the OAI-PMH in the remainder of this document) provides an
application-independent interoperability framework based on metadata harvesting.
An implementation of OAI-PMH must support representing metadata in Dublin Core,
but may also support additional representations.

o OGC CSW [10]: Catalogue services support the ability to publish and search

collections of descriptive information (metadata) for data, services, and related

information objects. Metadata in catalogues represent resource characteristics that

can be queried and presented for evaluation and further processing by both humans

and software. Catalogue services are required to support the discovery and binding

to registered information resources within an information community.

o OpenSearch [11]: Search clients can use OpenSearch description documents to learn

about the public interface of a search engine. These description documents contain

Brokering architecture:
the ODIP prototype model views

24

ESSI-lab
Florence Division CNR-IIA

parameterized URL templates that indicate how the search client should make

search requests. Search engines can use the OpenSearch response elements to add

search metadata to results in a variety of content formats.
[]

Access interface containing operations to access resources. This abstract interface is
specialized by many different access interfaces. Amongst them, example given:

o OPeNDAP [12]: the Open-source Project for a Network Data Access Protocol
(OPeNDAP) Data Access Protocol (DAP), a data transmission protocol designed
specifically for science data. The protocol relies on the widely used and stable
Hypertext Transfer Protocol (HTTP) and Multipurpose Internet Mail Extensions
(MIME) standards, and provides data types to accommodate gridded data, relational

data, and time series, as well as allowing users to define their own data types.

o OGC SOS [13]: The SOS standard is applicable to use cases in which sensor data
needs to be managed in an interoperable way. This standard defines a Web service
interface which allows querying observations, sensor metadata, as well as
representations of observed features.

o OGC WCS [14]: a Web Coverage Service (WCS) offers multi-dimensional coverage
data for access over the Internet.
g]
«CV_Objects
ODIP broker «CV_0,
Semanticsinterface
0O e s meme s T = cov_ooects ?Wﬂ
«CV_Operationinterfaces o — Semanfics Enoeg e
Discoveryinterface - - [Semanticsinterface
gl
\ ui\tfﬂ‘med- F=— e Xy «CV_Objects E] _______ = «CV_Objects E %.4 :|
«delegates Toliiess «usex Access Executor SH3ES Data Downloader «delegates
«CV_Operationinterfaces P RS N wuser 7 TV 0 «CV_Operationinterfaces
IDispatcher _-atses ' \\ /‘x’\’ Accesslnterface
L +CV_Oblects) (‘u\se» cr oo A [g s =
«CV_Operationinterface» Dispatcher l N Data Transformation [~ === - >
Accessinterface \ S Tester alses N «W,g’me'g‘x
\ N cosasorston
)
edelagates M i Sroc) LLHE
. s T TR e i
\ *\L — Accessor
e e A P N
$] aUSEn : “N__ Y «CV_Operationinterfaces
covobes |_________ : 2 \\ Discoverylnterface
Configuration [T TTTTTC se. LI = «CV_Objects l
Manager \:\ 0 DB Manager i
T : 4 =
N - e 3
sob Sohemr | wises | <Ob-oukct '

Figure 17 Internal structure of the ODIP broker computational object

Figure 17 shows the main subcomponents of ODIP broker, along with their interactions. They are:

o Dispatcher: in charge of dispatching incoming requests to either the Administration
component or to one of the available Profiler. The Dispatcher uses a path-based strategy to
select the component to forward the request to.

[)

Profiler: publishes Gl-suite functionalities according to a specific service interface (e.g. OGC
CSW, OGC WCS, OPeNDAP, etc.). In order to execute the incoming request, the Profiler must

Brokering architecture:

ESSI-lab
the ODIP prototype model views

25 Florence Division CNR-IIA

perform a set of actions in a given order. The set of actions and their order depend on the
specific incoming request and are defined by Function Handlers.

e Query executor: executes discovery of the resources matching the user queries (both count
and retrieval) from the sources that are available in the source configuration document and
depending on user authorizations.

e Accessor: in charge of communicating with remote heterogeneous services, downloading
the original metadata records and transforming the Original metadata to Harmonized
metadata.

e Semantics engine: in charge of communicating with remote semantics services, in order to
execute semantics queries (e.g. to retrieve related terms in an ontology).

e Access executor: in charge of executing access requests, orchestrating the Data
Downloaderand the Access Workflow.

e Data downloader: in charge of retrieving data from the provider access service.

e Access workflow: in charge of executing simple transformations (such as format conversion,
CRS reprojection, subset, interpolation) to transform the downloaded data according to the
user access request

e Administration: in charge of managing ODIP broker system options, delegating incoming
requests to the configuration manager

e Configuration manager: in charge of reading/writing the configuration to the DB;
periodically synchronize local configuration with the remote one (on DB); fire an event when
an updated configuration is found on the DB

e Job Scheduler: in charge of scheduling and launching ODIP broker recurrent jobs (e.g.
harvesting, access tests). The component defines the interface for scheduling and launching
jobs in Gl-suite; provides mediation functionalities to use external dedicated scheduling
libraries

o Data Transformation Tester: verifies that all required access transformation workflow
outputs are reachable from at least one RemoteDataDescriptor.

e Harvester: implements harvesting functionality which means collect metadata from a
Source and store them into the DB.

e DB Manager: provides complete interaction with a database. The interaction is done
through a set of published interfaces, which provide an abstraction layer on the underlying
database implementation.

Brokering architecture: ESSI-lab
the ODIP prototype model views 26 Florence Division CNR-IIA

«CV_Operationinterface»
Web Service

«CV_Operationinterface»
Request Handler

¢CV_Operationinterface» Web
bervice

I:j«dmegate» E
«CV_Objectpluggable»
Web service description

«CV_Operationinterface»
Req uest Handler

«delegate»

«CV_Obiject»

«CV_Object»
Profiler
«CV_Operationinterface»
«CV_Object» IQueryExecutor
Discovery Handler
e O\[
- ” I L N
- - I
- s i AN
- - - I3 : N, R]
.~ alUSe» /«use» «ulsen «use»\
- /}/ v \Q

g]

«CV_Object pluggable»
Web Request Transformer|

«CV_Obiject, pluggablex»
Result Set Formatter

«CV_Object pluggablex»
ResultSet Mapper

Handler Selector

-
-
- ~
~< = N
~

~
- ~
= N [&

rd
- «use», wusen ausen]
-~ ~ | -
=~ s 1 ”
RN

«CV_Object»
Access Handler

«usg»' ~ -

«CV_Operationinterface»
lAccessExecutor

Figure 18 Internal structure of the Profiler component, showing pluggable sub components

The sub components of the Profiler component are here reported as an example to appreciate in full
details the flexibility and modularity capabilities enabled by ODIP broker <<pluggable>>
components.

Two main function handlers exist, responsible for the two main categories of available
functionalities: the Discovery Handler and the Access Handler. Each of them is composed by a
configurable set of <<pluggable>> components, together concurring to determine their actual
behaviour. E.g.

e Web Request Transformer: in charge of validating and transforming a Web Request to an
internal harmonized Request

e Result Set Mapper: in charge of creating a one to one mapping of the Harmonized
metadata in the Result Set according to the metadata model required by the service
interface specification

e Result Set Formatter: in charge of join and format the mapped Result Set in order to be
presented to the client, according to the service interface specification

The <<pluggable>> stereotype indicates that is possible to easily extends ODIP broker, by simply
making available an additional implementation of such a <<pluggable>> component to the
system (e.g. to easily create additional components that are able to publish new interface types
or brokering new source types).

Brokering architecture:
the ODIP prototype model views

ESSI-lab

27 Florence Division CNR-IIA

«CV_Object»

OAI-PMH GMI
Handler: Discovery
Handler
T
e I N
«usen «uge» «usen
L v RN
«CV_Object,pluggable» «CV_Object,pluggable» «CV_Object, pluggable»
QAIPMHRe questTransformer: QAIPMHResultSetFormatter: GMI_ResultSetMapper:
Web Request Transformer Result Set Formatter ResultSet Mapper

Figure 19 Component instances of an instantiated Discovery Handler: the OAI-PMH GMI
Handler

Figure 19 shows an example of instantiated components, concurring to “construct” the composed
component OAI-PMH GMI Handler that is a component able to publish the OAI-PMH service
interface supporting ISO 19115-2 as metadata format. The instantiated components are in this case:

e OAIPMHRequestTransformer: in charge of transforming web requests valid according to the
OAI-PMH protocol to the internal harmonized Query request.

e OAIPMHResultSetFormatter: in charge of creating a valid (according to OAI-PMH) list
records web response structure to be filled with mapped records

e GMI_ResultSetMapper: in charge of mapping from the Harmonized metadata model to the
ISO 19115-2 metadata model.

The interaction diagram in Figure 20 shows the interactions between the described components
during execution of an OAI-PMH List Records request for GMI metadata records:

e The OAI-PMH Web Request is received by the Broker OAI-PMH service interface. The first
component to manage it is the Dispatcher, passing the request to be served to the Profiler
component able to manage it.

o The Handler Selector is a Profiler sub component able to delegate to a configured Handler
(in this case the Discovery Handler, with GMI Result set Mapper and OAI-PMH Formatter).

e The Discovery Handler uses the Web Request Transformer to translate from the OAI-PMH
Web Request to a discovery request expressed as an internal Discovery Message.

e The Discovery Message is (possibly) expanded through an invocation to the Semantics
Engine, which in turns contacts a semantics service such as Rosetta Stone to resolve search
terms (if any) according to the user required semantics relation (if any).

e The augmented Discovery Message is passed to the Query Executor, in charge of executing
the query and return matching resources from both the DB and the remote sources.

e Each returned Resource (in particular each Harmonized Metadata object) is mapped to a
GMI metadata document in this example;

e The mapped records are collected and then formatted by the Result Set Formatter
according to OAI-PMH response schema.

e The response is sent back to the client application.

Brokering architecture: ESSI-lab
the ODIP prototype model views 28 Florence Division CNR-IIA

e e o

Pio2aJ BlepelaW Z-GL16LOSI

1
! =
«UONBIOAU[AD»

asuodsal spi0dal 181 HNJ-IVO! ==
1
«UOIEI0AU AD» “
(sbessapy)iewo; |
1
|

!]

(a21nosay)dew

[18synsay ut aainosay yoep foj]

1BsINsay:
«UONED0AUAD»

(abessapyfusnoasig)anauial

ﬁ—w_r asuodsay gapn

-

asuodsay gaj\:

|

{sg > awu uonedoAu 101}

1
1
1
|
T
1
1
1
1
|
| I
1 1
“ " _ o]
1 ! abessa|yfianoasig:
“ “ «UOEDOAU AD?
! ! T 13A02s1)pued:
\ \ | W \Q)puedx3A)
1 1 1
| | 1 il
" “ “ abessapy Aanoasiq:
! | 1 «UOIEI0AU| AD»
1 1 1
“ " “ " (1sanbay gapp
| | 1 | HWd-vo)puogiasniab «UOIEI0AU| AD»
! 1 1 1 T
| | | i | (1sanbay g3
] I 1 | | | 108j8s -
_ ! ; ! : HINd-YONo3] | | cuoneoonno»
: | . ! ! (isanbay gap HN IVO)anas
1 1 | | | i i
1 L 1 1 1 L I 1
Jeyewiod 198 ynsay Jaddey 18S Ynsay Jawuojsuel] jsanbay gapn JgjpueH Aanodsig
JBHEWI0JRSHNSHHNIVO JaddeppSINSSY IND Joinaex3 Aenp © aubugsol jsuel 3senbayHINGIY O J8PUEH IND HND-YO 103[8G JBPUEH : Jayopdsiq -
«2ego A Gl loibed «palg0 AD» «palg0 AD? «alg0 AD? «palgn A «palg0~AD» «palg0”AD»

Figure 20 Interaction diagram focusing on sub components involved during an execution of an

OAI-PMH List Records request

ESSI-lab

Florence Division CNR-IIA

Brokering architecture:

29

the ODIP prototype model views

Interoperability API components

To simplify the development of third-party applications and clients that make use of the broker
services, an high level client-side Open APIs (Application Program Interface) was designed and

developed in JavaScript. The interoperability APl is published online [15]; such an interface is going
to be submitted to OGC for standardization, with the support of GEO. The main objects around
which the APl is developed are shown in Figure 21. These are:

Broker: The APl entry point. This object provides the ability to create a node connected to an
existing broker server instance. Broker is a composed Gl-node and it's the root of the
hierarchical structure defined by the brokered sources. The main Broker operation allows to
discover any Gl-node regardless of their level in the hierarchy.

ConsumerDefinedView: this object enables the same operations allowed by the Broker, but
limiting results on a specified subset of resources of interest, selected by a set of predefined
discovery constraints.

Gl-node: A Gl-node is a Geo Information node representing an abstract geospatial resource,
a "dataset" or a "service", available as result of a query to the Broker.

Gl-node properties such as title and abstract are described by a Report. A particular Report

property attribute is type, which defines which kind of interactions are available with the
node. When a node represents a "service" such as WMS, WCS, etc, the report has an

additional service property.

e Source: This kind of GI-node represents a source brokered by a Broker instance. Broker
sources can be retrieved with the getSources() method. Since the Broker sources are first

Brokering architecture:
the ODIP prototype model views

ESSI-lab
30 Florence Division CNR-IIA

level nodes (the Broker direct "children"), they can also be retrieved as result of the first call
of the expand method.

e Paginator: This object is provided as result of a discover or expand/expandNext operation
and has several information such as the number of the returned nodes (the size of the result
set) and the number of pages with which the result set is split.

e Page: Aresult set page of Gl-nodes

Sources «Gl-node»
+builtResource <> Source
instantiates ——] 1.
+constructor—
«Gl-node» —
Broker
+ discover(DiscoveryParameters) :ResultSet «ut_ility»
+ getSources() :Sources +constructor Paginator
+ view(DiscoveryParameters) :ConsumerDefinedView F——_instantiates . s
——:builtObject ResultSet / next() -Page
OperatesOn
«Glnode»
ConsumerDefinedView atiity»
; : Page
+ discover(DiscoveryParameters) :ResultSet
+ getSources() :ResultSet
s i
+accessgjbleResource /"Sts
«Gl-node»
Resource
+ download(RepresentationParameters) :ListOfLayers
Gl-node -
7 \
+ report :Report 72 RepresentedBy
yZ4
«Clause»_ «Representation»
Representation Layer
Parameters

Figure 21 Class diagram of the interoperability APl showing main objects and operations

Brokering architecture: ESSI-lab
the ODIP prototype model views 31 Florence Division CNR-IIA

ENGINEERING VIEW

The ODIP broker system is based on a three tier architectural style consisting of the following nodes
—see As Figure 22 :

e (ClientTier: an user of a SeaDataNet community app will use a desktop or notebook PC, which
serves as ClientTier; a portal such as the ODP Portal is installed on a server node serving as
ClientTier

o BrokerTier: requests from ClientTier nodes are sent to a middle tier server node, which
serves as the BrokerTier. The ODIP broker middleware service is executing on the ODIP
broker ECS cluster node.

e ServerTier: functional requests are sent from the BrokerTier to other server nodes, which
serves as ServerTier. Data and semantics services are executing on these server nodes, such
as IMOS AODN CSW/ISO-MCP services and Rosetta Stone semantics service.

For a system-of-systems development, the three tiers brokering architecture has many advantages
with respect to the traditional two tiers Client-Server archetype (depicted in Figure 23 Figure 23).
The critical interoperability issue can be summarized as the problem of allowing M different
applications to interact with N different data sources: an MxN complexity problem.

By an architectural point-of-view, System-of-systems can be implemented in a pure two-tier (client-
server) environment. The M clients can interact with N servers simply, because only one type of
interaction is defined by a common model —aka the federated model. The MxN complexity is solved
at client/server level requiring both of them to be compliant with the federated model. On the other
hand, brokered architectures introduce a middle-tier, between clients and servers, reducing the
MxN potential interactions (each client interacting with each server) to M+N (each client and each
server only need to interact with the brokers). The middleware is in charge of mediating between
heterogeneous clients and server, leaving them autonomous —i.e. they do not have to implement
the federated model.

The deployment diagram, depicted in Figure 24 provides further details on the deployment of the
ODIP broker on an Amazon Web Services (AWS) ECS cluster. Two virtual machines are dedicated to
the deployment. Each one hosts an ODIP broker service. Each service is composed by an auto-scaling
set of containers, deployed as Basic Engineering Objects (BEO), providing identical brokering services
(because instantiated by identical container images). A BEO Application Load Balancer distributes
incoming requests amongst the available ODIP broker containers. Auto-scaling is regulated by
upscaling and downscaling rules, triggered by request execution times. A health check mechanism is
in place to remove containers eventually starting to exhibit a malfunctioning behavior. The container
based architecture along with the Amazon services enable portability, reproducibility and production
level Quality Of Service (QOS) requirements in terms of availability, reliability and performance.

Brokering architecture: ESSI-lab
the ODIP prototype model views 32 Florence Division CNR-IIA

8] Al

«NV_Node» «NV_Nodes «NV_Node»
ClientTier BrokerTier ServerTier
«NV_Node» «NV_Node»
ODP Portal server: SeaDataNet user PC
ClientTier : ClientTier

«NV_Node»
ODIP broker ECS
cluster : BrokerTier

2] g]

«NV_Node» «NV_Node» «NV_Nodex»
Rosetta Stone IMOS AODN SeaDataNet CDI server
semantics server: CSW/ISO-MCP server: : ServerTier
ServerTier ServerTier

Figure 22 Node configuration for the brokering system architecture (client and server nodes
are connected through the broker: M+N connections)

«NV_Nodex
ClientTier

«NV_Nodes
ServerTier

=1 8]

«NV_Node» «NV_Node»
ODP Portal server: SeaDataNet user PC
ClientTier : ClientTier

8] 8] 8]

«NV_Node» «NV_Node» «NV_Node»
Rosetta Stone IMOS AODN SeaDataNet CDI server
semantics server: CSW/ISO-MCP server: : ServerTier
ServerTier ServerTier

Figure 23 Node configuration for a client server architecture (each client node connects to
each server node: M*N connections)

Brokering architecture: ESSI-lab
the ODIP prototype model views 33 Florence Division CNR-IIA

«NV_Node»
ODIP broker ECS cluster

5]

«NV_Node» «NV_Node»
Virtual machine 1 Virtual machine 2

z]

2]

ODIP broker service

«NV_Node» «NV_Node»
ODIP broker service

3]

«NV_BFO» @ @
Application Load Y N «NV BEO» «NV_BEO»
Balancer ODIP broker container 1 ODIP broker container 3

«NV_BEO»
ODIP broker container 2

Figure 24 Details of ODIP broker AWS ECS cluster deployment

Brokering architecture:
the ODIP prototype model views 34

ESSI-lab
Florence Division CNR-IIA

TECHNOLOGICAL VIEW

The ODIP broker is a Java based software framework supporting a multiplatform deployment.

Technology implemented and tested in the realization of GEOSS Discovery and Access Broker (GEO-
DAB) [16] has contributed to realize the ODIP brokering framework.

For the AWS ECS [17] deployment in ODIP the following technology stack has been adopted: Docker
APl version 1.3.5 to build the container image (based on Debian Jessie, Java OpenJDK version 1.8,
Apache Tomcat servlet container version 8).

Java ServiceLoader mechanism has been used to provide pluggable capability to specific component
types.

JAX-WS specification has been implemented to publish the broker web service interfaces, and
realized through Apache CXF Web services framework.

MarkLogic Server [18] has been adopted as a XML database for local cache of metadata content
enabling optimized searches.

The interoperability API has been realized as a JavaScript library, adopting an object-oriented style
paradigm. Web portal developers can easily import it in their web project to connect to the ODIP
broker.

The Atlassian JIRA [19] issue tracking system is used to document and manage technical requests (as
mentioned in the Enterprise view section), as well as to document and manage code releases. It
provides bug tracking, issue tracking, and project management functions.

oAB & Jocker - N .

o
amason ® MarkLogic

webservices”
v R N
openDk ¥ Apaché ¥JIRA

Figure 25 Main technologies powering up the ODIP broker prototype

Brokering architecture: ESSI-lab
the ODIP prototype model views 35 Florence Division CNR-IIA

DISCUSSION

To adopt a formal reference model has proven to be useful to provide a documentation of the ODIP
broker system, highlighting both the approach and technical features:

e Enterprise view: The actors and requirements of the ODIP broker have been highlighted,
although focusing on the ODIP broker (system) community, it would be useful as a future
work to describe in more details as well the other communities that interact with it,
especially considering specific policies and rules that might emerge in real-world cases in the
international context.

e Information view: the information managed by the broker has been described according to
this important view. Heterogeneous information coming from remote distributed services
needs to be harmonized and managed by the broker.

e Computational view: components implementing the functional requirements are presented
by this view. The main components are shown, focusing on the possibility to customize and
extend the ODIP broker in the future leveraging pluggable components.

e Engineering view: the actual deployment of the ODIP broker system has been described,
focusing on the Cloud deployment to assure QOS requirements.

e Technological view: technologies used to actually implement the ODIP broker system have
been presented

CONTACT POINTS

For further information, please contact:

Enrico Boldrini (enrico.boldrini@cnr.it)

Stefano Nativi (stefano.nativi@cnr.it)

Brokering architecture: ESSI-lab
the ODIP prototype model views 36 Florence Division CNR-IIA

mailto:enrico.boldrini@cnr.it
mailto:stefano.nativi@cnr.it

REFERENCES

[1]

(2]

3]

[4]

(5]

6]

(7]

(8]

[9]

ISO/IEC, «Information technology — Open Distributed Processing — Reference model:
Overview,» 15 12 1998. [Online]. Available:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c020696_ISO_IEC_10746-
1_1998(E).zip.

ITU-T, «Information technology - Open distributed processing - Use of UML for ODP system
specifications,» 10 2014. [Online]. Available:
http://www.lcc.uma.es/%7Eav/download/UML40DP_IS_V2.pdf.

D. M. A. Schaap, «Deliverable D3.1: Definition of ODIP Prototypes 1,» 2016.

E. Boldrini e S. Nativi, «<SeaDataNet metadata profile of ISO 19115,» 2017. [Online]. Available:
https://www.seadatanet.org/content/download/1855/11028/file/CDI-profile-
V10.0.1.pdf?version=3.

E. Boldrini, S. Nativi e D. M. Schaap, «INSPIRE compliant international standards for the
SeaDataNet marine metadata,» in IMDIS 2013, Lucca, 2013.

Australian Ocean Data Centre, «Marine Community Profile Manual v2.0,» 2006. [Online].
Available: http://mcp-profile-docs.readthedocs.io/en/stable/.

ISO, «ISO 19115 Geographic information - Metadata,» I1SO, Geneva, 2003.
B. Domenico e S. Nativi, «CF-netCDF Data Model extension specification,» OGC, 2012.

The OAI Executive, «The Open Archives Initiative Protocol for Metadata Harvesting,» 2002.
[Online]. Available: http://www.openarchives.org/OAl/openarchivesprotocol.html.

[10] OGC, «Catalogue Service,» [Online]. Available: http://www.opengeospatial.org/standards/cat.

[11] C. DeWitt, «OpenSearch 1.1 Draft 6,» [Online]. Available:

https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md.

[12] OPeNDAP , «OPeNDAP - Advanced Software for Remote Data Retrieval,» [Online]. Available:

https://www.opendap.org/.

[13] OGC, «Sensor Observation Service,» [Online]. Available:

http://www.opengeospatial.org/standards/sos.

[14] OGC, «Web Coverage Service,» [Online]. Available:

http://www.opengeospatial.org/standards/wcs.

Brokering architecture: ESSI-lab
the ODIP prototype model views 37 Florence Division CNR-IIA

[15] «DAB JavaScriptAPl,» CNR-IIA, 2018. [Online]. Available: http://api.eurogeoss-
broker.eu/docs/index.html.

[16] Group on Earth Observations, «GEO Discovery and Access Broker,» [Online]. Available:
http://www.geodab.net/.

[17] Amazon, «Amazon Elastic Container Service,» [Online]. Available:
https://aws.amazon.com/ecs/.

[18] MarkLogic, «MarkLogic Server homepage,» [Online]. Available: https://www.marklogic.com/.

[19] Atlassian, «Atlassian Jira,» [Online]. Available: https://jira.atlassian.com/.

Brokering architecture: ESSI-lab
the ODIP prototype model views 38 Florence Division CNR-IIA

