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2.1 Introduction 

 
A rigorous scientific process is essential to forming sound conclusions that can inform evidence-
based decision-making. This process starts with defining a research question, assessing what level 
of information is needed and then critically assessing how that information should be obtained (see 
Table 2.1 and Hayes et al., submitted). Evidence can be obtained from a variety of sources, ranging 
from expert opinion, through ad-hoc data collection, then well-designed observational surveys, and 
finally to randomised controlled experiments. Well-designed experiments/surveys that are targeted 
to the research question, however, are also generally more expensive than expert opinion, which is 
a source of information that may be adequate in some certain situations (see Leek and Peng, 
2015). Table 2.1 provides a brief overview of the hierarchy of research questions and the types of 
data that are appropriate to answer them. 

Table 2.1 Different types of research questions (adapted from Leek and Peng, 2015) 

Research 

Type 

Description Example Question Complexity 

Descriptive 

associations 

Summaries of observed data What is happening within 

our sample? 

Simple 

Exploratory Identify trends and relationships 

within the sample1 

What correlates with reef 

die-back in the sample? 

 

Inferential Extending the patterns in the 

sample to the population from which 

the sample was taken 

What is the status of 

species X in a marine 

protected area? 

Predictive Predict the values at unsampled 

locations based on sampled data 

What assemblage is likely to 

be found in this location? 

Causal Identify the reason for a particular 

association 

Are the implemented MPAs 

having an effect? 

 

Complex 
1
There is no way to tell if the sample’s associations are the same as the population’s  

Observational data from well-designed marine surveys are able to inform all research types and are 
sometimes the only source of adequate information (Table 2.1). The exception is for causal 
inference (attributing impacts to specific causes), where randomised controlled experiments are 
often needed. However, in that case there are usually other limiting factors whose discussion is 
beyond the scope of this manual (see Hayes et al., submitted). Causal questions require special 
attention and are usually more demanding in terms of the resources needed to answer them. Thus, 
we focus on (marine) observational surveys, and in particular the design of surveys. Wil the topics 
discussed in this section are relevant to investigating causal relationships, other considerations 
would also be required to be addressed before undertaking research (we do not deal with those 
here). For more information on the evidence hierarchy, and a more thorough description of the 
different design types for marine ecology, see Hayes et al. (submitted). 
 
A key concern in this scientific process is ensuring that survey data are trustworthy and fit-for-
purpose (i.e. can answer the research question). To this end, it is important that surveys and 
monitoring programs are designed and implemented in such a way that the resulting data are: (i) 
appropriate for the research question under consideration; (ii) are representative of the population 
under investigation so that (for example) the sample mean is generalisable to the population mean; 
and (iii) information rich so that uncertainty around inferences is reduced as much as survey 
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budgets will allow. We focus here on survey designs that will help ensure environmental monitoring 
programs deliver data with these characteristics. 

2.1.1 Scope 

This chapter will not follow the usual presentation for statistical design in ecology. Rather, we will 
focus on what we believe to be most important aspects from a practical (and management) 
viewpoint. We do not intend it to be like a ‘text-book’ and explicitly do not include formulae or 
descriptions of tangental details. Readers will want to look elsewhere for such detail (Urquhart and 
Kincaid, 1999; Gitzen et al., 2012; Thompson, 2012, are a good start, although there are many). We 
hope to only introduce the relevant concepts and stress that these are the things that should be 
thought about by all researchers involved with survey planning. In particular, we discuss: (i) 
randomisation, (ii) efficiency of design, (iii) uncertainty reduction, (iv) sampling in space and time, 
and (v) specifics for different gear types. This all leads to an illustrative example design, using the 
MBHdesign R-package. (available from CRAN, https://cran.r-project.org/package=MBHdesign). For 
those readers interested in acronyms: MBHdesign stands for Marine Biodiversity Hub design. The 
goals and techniques implemented in MBHdesign are outlined throughout this chapter. 

2.2 Randomisation 

In all areas of science (and where statistical methods are applied), representative samples are 
typically achieved by randomisation (e.g. Thompson, 2012; Smith et al., 2017; Tillé and Wilhelm, 
submitted). Randomisation ensures that the information contained in the sample is generalisable to 
the population that it was obtained from (Fisher, 1925). Simply using some sort of random sampling 
ensures that many types of research questions are answerable (see Table 2.1). The alternative, 
which is unfortunately still relatively common in marine ecology, is to select sites based on other 
(non-random) properties. These properties could include their convenience to sample, or what a 
researcher expects to find. This is called ‘ad-hoc’, ‘opportunistic’, ‘haphazard’, ‘judgemental’ or 
‘convenience’ sampling. While at first glance this approach appears to be efficient, it in fact removes 
the ability to answer any questions about the population as a whole, which limits questions to those 
involving the specific sample only: descriptive and exploratory questions (unless non-testable 
assumptions are made). The reader is referred to Smith et al. (2017) for a recent discussion of this 
topic in ecology. 
 
The implication here is immediate and clear – researchers should randomise the sampling 
process if they expect that the patterns observed in the sample to hold in the population. No 
researcher should routinely perform haphazard sampling. Of course, there may be situations where 
a particular location appears so interesting that it could be appended to a randomised survey 
design, but its data can only be included into the analysis with additional (strong) assumptions 
and/or complexities in analysis approaches. The randomisation process is particularly important for 
monitoring programs where data from multiple surveys (through time and/or space) are combined. 
 
An important side-effect of randomisation is that a researcher must specify what the statistical 
population under study is. Formally, for surveying geographic areas, the population is a collection of 
potential survey locations from which a random sample is taken, often called a sample frame in the 
literature. The formal specification of the sample frame is important as it gives the extent to which 
the results are legitimately generalisable. A sample frame may be delimited by some combination 
of: spatial extent, depth, habitat type, season and the type of sample that the selected gear can 
adequately collect. Generalisation beyond the sample frame requires assumptions, often quite 
strong assumptions, that the processes outside the sample frame are identical to those within it. It is 
best to try and avoid these assumptions by expanding the sample frame prior to undertaking the 
survey. 

https://cran.r-project.org/package=MBHdesign
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2.3 Efficient Designs 

Simple randomisation – randomly scattering sampling locations through space – is not necessarily 
an efficient approach, and in many circumstances a large number of samples are necessary to 
obtain acceptably precise estimates of population parameters (e.g. Tillé and Wilhelm, submitted). 
This is one of the reasons that haphazard sampling can initially although mistakenly appear quite 
attractive, however there are ways to address this inefficiency, and to generate designs that require 
fewer samples and resources. Researchers have proposed statistically valid restrictions on the 
randomisation process, and research in environmental sciences has ultimately led to spatially 
balanced designs (Stevens and Olsen, 2004; Dobbie et al., 2008; Grafström et al., 2012; Grafström, 
2012; Grafström and Tillé, 2013; Grafström, 2013; Robertson et al., 2013; Brown et al., 2015; Foster 
et al., 2017; Tillé and Wilhelm, submitted), with similar ideas known as ‘spatial coverage designs’ 
(Royle and Nychka, 1998; Brus et al., 1999, 2006; Minasny and McBratney, 2006; Walvoort et al., 
2010) and ‘even sampling designs’ (Chen et al., 2012). A spatially balanced design can be seen as 
an extreme form of stratification (Stevens and Olsen, 2004) that aims to reduce the frequency of 
placing samples close to each other (relative to simple randomisations). This process improves 
efficiency by reducing the amount of spatial auto- correlation between data implying that each 
sample is providing as much unique information as possible (Grafström and Tillé, 2013). 
Additionally, spatially balanced designs are more efficient than other types of randomised designs 
as they tend to increase balance on many environmental variables (also known as covariates), 
where the populations covariate mean is equal to the samples covariate mean (Grafström, 2013). 
This is more than just stratifying for important environmental gradients, as that process does not 
ensure balance unless explicitly accounted for. Even if balance is sought in stratification, the simple 
randomisation process within strata lacks efficiency, can complicate analyses, and can be wasteful 
of ‘degrees of freedom’ in the analysis (reducing analytical power). In summary, spatially balanced 
designs are used to enhance efficiency so that the greatest amount of information is obtained from 
the any given number of sample locations (compared to other forms of randomisation). 
 
Some researchers will know spatially balanced designs as ‘GRTS’ (for generalized random 
tessellation stratified; Stevens and Olsen, 2004), but GRTS is just one type of spatially balanced 
design. It is a good design approach and it is the prime reason that spatially balanced designs are 
gaining popularity. However, it is not the most spatially balanced design, which implies that it is also 
not the most efficient (Grafström et al., 2012; Robertson et al., 2013; Foster et al., 2017). Between 
the various spatially-balanced design types, the differences in relative performance are minor. 
Computational methods for GRTS, via the spsurvey R-package (Kincaid and Olsen, 2016), in our 
experience can be cumbersome, time-consuming and in some ways inflexible. The inflexibility 
stems from sampling only in two dimensions. Experienced GRTS users can legitimately continue 
using it, as the efficiency cost is not large, and they have already overcome many of the more 
cumbersome aspects. However, we recommend that new users, and some more discerning users, 
start with MBHdesign. 
 
While we focus here on spatial balance, many (but not all) of the algorithms for producing spatial 
balance can be employed to sampling more than just 2-dimensional space. In particular, the 
algorithms implemented in MBHdesign are equally applicable to space-time scenarios and even 
space-depth-time ones (where a 3-dimensional volume, such as a water mass, is sampled over 
time). In fact, the algorithms scale well with dimensions, and there is no limiting dimensionality, 
except what is practical in the application. 
 
The efficiencies of spatially balanced designs can be further improved by increasing the probability 
of selecting sampling locations where the sampling variable is thought to have greater variance (e.g. 
Godambe and Joshi, 1965; Brewer et al., 1988; Chambers, 2011; Grafström and Tillé, 2013). This is 
achieved by altering the so-called inclusion probabilities of each potential sampling location. 
Inclusion probabilities specify the chance of each site being randomly chosen to be part of the 
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survey and they can be chosen on the basis of data from a pilot study or from other sources (e.g. 
literature on similar species and/or regions). An inclusion probability near zero will imply that the site 
will almost never be sampled, whereas a site with inclusion probability of one will be chosen much 
more often. The inclusion probabilities are prescribed by the survey designer to indicate where the 
sampling effort should be placed (see Grafström and Tillé, 2013, for more information on how to 
perform this task). In ecology, where biological variables often have an increasing mean-variance 
relationship (e.g. through Taylor’s power law; Taylor, 1961), this equates to increasing inclusion 
probabilities in locations where the population being sampled is expected to have high abundance. 
If no prior knowledge exists, such as from previous surveys or a pilot study, then the inclusion 
probabilities should be equal. 
 
Altering inclusion probabilities requires the identification of one or more measured covariates 
(available at time of design) that can be used to guide the variation in inclusion probabilities. It also 
is beneficial only in situations where the inclusion probabilities are related to the sampling variable. 
When inclusion probabilities do not have this relationship, then this will cause a loss of efficiency 
(lower precision) than equal inclusion probabilities. We caution against using too many covariates in 
the design stage and point out that equal inclusion probabilities is a conservative approach. In fact, 
fewer covariates is better in many ways. The simple reason is that if they are used to define the 
design then they must also be used in the analysis (as the design is conditional on these 
covariates), see Gelman et al. (2013) and Foster et al. (2017) for discussion. This means that 
precious ‘degrees of freedom’ must then be used to estimate potentially non-helpful parameters, 
which has the effect of increasing analysis complexity and reducing the discrimination ability of the 
analysis. So, the survey designer must weigh up the anticipated reduction in variation due to 
incorporating the covariate against the necessity to use more terms in the model. 
 
The concepts of stratification and altered inclusion probabilities are almost, but not quite, identical in 
situations where stratification is applicable. However, at the cost of being conceptually more 
sophisticated, the inclusion probability concept is more general and more flexible. The reasoning for 
the equivalence is that the inclusion probabilities can be designed to match the stratification, so that 
on average the specified number of survey sites is chosen within each strata, but this is not 
guaranteed for every randomised design. Contrastingly, all stratified designs will have the specified 
number of survey sites within each strata. To us, this is not a large difference and the benefit of 
being able to spatially balance the design is likely to lead to bigger benefits. We therefore 
recommend altering inclusion probabilities with spatial-balance in preference to formal stratification. 
However, stratification is not a bad option and is more efficient than simple randomisation (when the 
stratification is meaningful). We note that the spdesign software that implements GRTS allows for 
stratification and spatial balance by balancing within each spatially-contiguous strata. 
 
When planning marine monitoring programs, the ability to incorporate any existing sites will often be 
advantageous. In the NESP Marine Biodiversity Hub, methodology was developed to incorporate 
these legacy sites into a spatially balanced design. Legacy sites (or historical, reference or sentinel 
sites) are those sites that have been sampled in the past and the researcher wants to re-visit them 
as part of the upcoming survey. Readers are referred to Foster et al. (2017) for details. Briefly 
however, spatial-balance is achieved by adjusting inclusion probabilities (within the proximity of 
legacy sites) downwards so that new samples are less likely to be placed near legacy sites. 

2.3.1 Software 

There are many pieces of software that will generate spatially-balanced designs, most of which are 
based on different algorithms. For monitoring the marine environment, we developed a specific 
software – the R-package MBHdesign. It is intended to be easy to use and tailored to common 
situations in marine ecology2. It also has the ability to make designs spatially balanced around 
existing legacy sites, see Foster et al. (2017). We will use MBHdesign in the example to follow.
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2.4 Uncertainty, Precision, and Power 

It is important to consider how to reduce the uncertainty (and increase precision) in statistical 
analyses of survey/monitoring data. Practically, there are two components to this: 1) increasing the 
information content in the dataset; and 2) reducing the noise in the collection process. Performing 
an efficient survey/monitoring design, such as a spatially balanced design, is aimed at increasing 
information content in the dataset (by trying to make each sample represent as large a portion of the 
sample frame as possible). More information implies that the signal in the data can be clarified with 
more ease. Noise reduction comes from using measurement protocols that are designed to be 
repeatable (so that two measurements on the same sample will generate very similar observations). 
See the gear specific chapters in this field manual package for detailed advice on reducing 
measurement noise. For some novel measurement platforms, measurement/scoring techniques are 
still being assessed and these updates should be incorporated where possible. Examples of this 
process are Perkins et al. (2016) for scoring AUV images and Schobernd et al. (2014) for scoring 
BRUV deployments. We stress though, that whilst noise reduction is important, it is not the only 
consideration and that particular care should be taken to maintain protocols within already 
established monitoring programs, or calibrate new protocols with old. In addition to reducing ‘noise’, 
it will ensure that, for example, time-series do not get ‘broken’ and that data are directly comparable 
in time and space without unfortunate confounding due to a change in sampling methodology. 
 
Most Chapters in this field manual package are variations on the noise-reduction theme as they 
provide a foundation for reducing variation between and within surveys. In particular, if adhered to, 
they will help minimise, or possibly even eliminate, inherent systematic variation (bias) between 
different surveys or within a monitoring program. This will have the effect of increasing the utility of 
combining data from different surveys (as there will be minimised bias between the two sets). We 
have unfortunately come across too many long-term studies that could not be used to estimate 
trends in the target species because of inconsistencies in sampling design and implementation 
(Hosack and Lawrence, 2013). 
 
Any approach to reducing variance in the sample statistics should be welcomed whole-heartedly, so 
long as there is no introduction of confounding between it and any spatial/temporal signals or other 
important trends. This includes processes to minimise measurement variation (e.g. non-uniform 
gear deployment, faulty measurement equipment, poor laboratory practices) and data entry errors. 
In most circumstances however, measurement variation is likely to be relatively small compared to 
the variation in the ecological processes that are being sampled. Understanding this means that 
exorbitant amounts of time should not be placed in perfecting each measurement – especially not if 
the cost of perfection is a substantial reduction in the number of samples taken. Often a much richer 
sample is obtained (in terms of signal to noise) by taking more, slightly noisier, samples than fewer 
precise ones. Unfortunately, we are aware of no rules-of-thumb to guide researchers with this issue. 
However, we do note that standard errors decrease with the square root of sample size and 
increase linearly with residual standard deviation. The same argument suggests that one should 
avoid taking excessive sub-samples. 
 
Some design experts advise that a power analysis be performed before any survey effort is 
undertaken. Recall that a power analysis calculates the probability that the survey will be able to 
detect a difference if there actually is one (a true positive). This is undoubtedly a good thing to do 
when there is a clear hypothesis to be tested and a clear effect size to be detected. However, this is 
not always the case. It has been observed that power analyses are often performed without great 
thought, leading to (perhaps) overly large stipulated sample sizes (e.g. Mapstone, 1995); probably 
larger than any reasonable budget will allow. The arguments outlined in Mapstone (1995) are, to us, 
quite compelling as they make a researcher undertaking a power analysis think critically about the 
relative environmental/economic/political costs of making a poor decision. Sometimes it will be more 
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important to guard against making a false-negative (type II) errors than false-positive (type I). Such 
a situation could occur if the cost of falsely declaring significance is larger than that of falsely 
declaring non-significance (e.g. declaring impact may result in closure of a factory or imposing 
fishing quotas). This is quite contrary to many applications of hypothesis testing in other areas of 
science. If a power analysis is undertaken, then there is some general advice that we offer to 
marine ecologists. First, don’t blindly follow text-book recipes for power analyses. They make some 
strong assumptions that are unlikely to be met in ecology (e.g. normality of observations, 
independence of observations, and constancy of variance in space and/or time). Second, be 
prepared to do a lot of homework about the sizes of the components of variation that you are likely 
to observe: “How much overdispersion is there in your study region?” “Is there any spatial 
autocorrelation likely?” “What analysis methods are intended to be used?”  
 
It is our opinion that a very useful, and often not too difficult, method for assessing power is to use 
simulation. There have recently been attempts to provide simplified R-based tools for this process 
(Green and MacLeod, 2016, for mixed models), and these show promise. The simulation approach 
consists of a small number of steps: 1) simulate some data under the alternative hypothesis 
(incorporating the effect that is being considered), 2) analyse the data and see if there is a 
significant effect, and 3) repeat steps 1) and 2) many times. The proportion of analyses (of 
simulated data) that produce a significant analysis will give one minus the power of the test. This 
approach has been used in many places, including the marine realm (Foster et al., 2014, Perkins et 
al., 2017). It is not the only piece of information that can come from the simulation though. In 
particular, it can be used to support the evaluation of how sample size and study design impacts 
more general monitoring objectives (e.g., the ability to estimate parameters in a model or predict 
future data). 

2.5 Spatio-Temporal Sampling 

Sampling in space is a task that requires plenty of thought, as demonstrated by the previous 
sections. Sampling in space and time (i.e. monitoring) requires even more thought as there are 
even more options. Generally, if one wants to sample repeatedly then the focus will be (at least 
partly) on trends though time. It is commonly established in the survey literature, that the uncertainty 
around temporal signals is reduced by repeatedly visiting the same sites (e.g. Urquhart and Kincaid, 
1999). This comes at a cost though – less sites are sampled and therefore the sample may not be 
as representative of the population as it could be. Extreme cases in marine sampling are when the 
sampling gear actively alters the population size (through extractive sampling) or its habitat (for 
example removal of epibenthic structure). In these cases, repeatedly sampling the same sites will 
not reflect the trends in the population. 
 
Intuition tells us that, unless sampling is destructive, then you should revisit at least some of the 
sites. This is due to the reduction in variation in the temporal signal (the site-to-site variability is 
removed). The proportion of sites to be revisited, and the pattern of revisits (e.g. rotating panel, 
fixed panel, and so on – see McDonald, 2003), will depend upon the temporal (and spatial) 
variability of the biota under consideration (see Perkins et al., 2017, and references therein). Legacy 
sites can, and should, be incorporated into a temporal monitoring program. Our advice is to try and 
make sure that some legacy sites get sampled during each revisit for new sites. This has the effect 
of ensuring ‘a link back to the legacy site time-series’ for each revisit. If the biota change rapidly, 
even at the same spatial location, then there is little point revisiting sites. This is especially so for 
monitoring programs with substantial time between revisits. In summary, think carefully about the 
relative importance of the temporal signal versus the generality. This will reflect the number of 
revisits to perform. Special consideration should be given to the spatial and temporal variances – if 
the biota exhibit a high temporal variance, then repeats will not reduce uncertainty substantially. 
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2.6 Gear-Specific Considerations 

Some gear types need special consideration as they naturally force the survey designer into 
different modes of thinking. To our mind, the biggest distinction in sampling gears for marine biota, 
for design considerations at least, is whether the gear collects a single observation from each 
deployment (e.g. a grab) or whether it collects many (e.g. an AUV). There is some grey area here: 
we class BRUVs as point collection methods and we class trawls also as point source methods. 
BRUVs can be thought of as a single spatial point but with potentially many temporal observations. 
Trawls integrate locations along a transect by means of combining the catch in a cod-end. 
 
When the spatial scale of the sample-frame is geographically large, in relation to the transect size 
(e.g. AUV) or field-of-view (e.g. BRUV), then all these methods can be treated as point collection 
and standard survey principles apply. However, when the sample frame is geographically small in 
relation to the size of the area sampled by the sampling gear, then the position of the observation 
within the sampling unit becomes important as biota from two separate samples may be spatially 
close. The only design advice in the literature for the gear types considered in this field manual 
package, that we are aware of, is to try and space samples well apart in space (Foster et al., 2014). 
However, proposed Marine Biodiversity Hub research (for 2018) aims to provide greater utility 
around this. Developed methods will be implemented into the R-package MBHdesign. 
 
There are more considerations when designing a transect-based survey. Chiefly, one needs to 
consider how long the transects are and in what direction the transects should be performed. Our 
intuition tells us that, logistics aside, the length of the transect should be dependent on the spatial 
properties of the biota being surveyed. Biota with large spatial autocorrelation should be sampled 
with many short transects, whereas biota with short spatial autocorrelation could be sampled with 
longer transects. See Foster et al. (2014) for an example of identifying length and direction of spatial 
autocorrelation from image-based transect data. Of course, it may be cheaper to deploy the 
sampling platform for longer and then simply sub-sample or account for the autocorrelation within 
an analysis model, but the reasoning will still provide advantages. In any situation, care needs to be 
taken in the analysis to account for this autocorrelation (see next paragraph for further elaboration). 
The direction of the transects might be gear dependent – for example it may be ‘safer’ to take 
transects down-slope or across-slope. However, irrespective of the restrictions on direction the 
design should aim to cover the study area as evenly as possible. Image based transects have 
further considerations – how much effort to place in scoring each image versus how much effort to 
place in scoring more images. Perkins et al. (2016) suggests that this too depends on the spatial 
properties of the biota under consideration and suggests apportioning effort according to these 
properties. 
 
When designing temporal surveys, it is important to consider if you can actually perform replicates 
with enough geographical accuracy to be useful. If the exact transect cannot be repeated then there 
is a confounding of temporal and spatial variation, and if the spatial patterns are quickly changing 
then the temporal uncertainty will also be inflated (Perkins et al., 2017). This is particularly 
concerning for gear types that are located only by the location of the deployment vessel. Even for 
accurately re-deployable gears the spatial repeatability is sometimes not sufficient (Perkins et al., 
2017). 
 
Whilst this chapter is about statistical design, we feel it important to mention statistical analysis of 
survey data, especially that resulting from transect-based sampling platforms. These produce data 
that are spatially close to each other, often very close. This naturally raises concerns about spatial 
autocorrelation and its impact on an analysis. Our advice for these platforms is to use geostatistical 
models (e.g. Diggle and Ribeiro, 2007; Banerjee et al., 2004). These naturally account for the 
spatial dependence between observations and adjust measures of uncertainty accordingly. This is 
not an easy approach and involves a steep learning curve for many practitioners. However, it does 
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circumvent the unfortunate (and dangerous) consequence of falsely considering that there is less 
uncertainty in the data than there actually is, which is effectively what happens when one assumes 
that geographically close observations are independent. Again, subsetting the individual 
observations within a transect is likely to have some beneficial effect on mitigating autocorrelation 
(e.g. Mitchell et al., 2017). However, doing so presupposes that the range of the autocorrelation is 
less than the distance between the subsetted observations. 
 

2.7 Multibeam as Foundation Data 

Multibeam data that covers an entire area (sampling frame) is a real boon for designing efficient 
surveys. It enables the survey design team to produce a design that picks out the major sources of 
variation in the ecosystem (typically depth and hard substrate), which can then be used to alter 
inclusion probabilities. To use it one must consider how the multibeam data might be related to the 
variance in the target biota being sampled; it is reasonable to spend greater survey effort on hard 
substrate to reduce uncertainty. For example, sponge abundance will have higher variance on hard 
bottom than on soft bottom and so a sponge survey should disproportionally target hard bottom. 
Once these areas have been identified, then the inclusion probabilities for those regions can be 
increased, which will increase the chance of sampling hard substrate but maintaining the ability to 
infer to the sampling frame. This is the intuition in the approach that was used in Lawrence et al. 
(2015). 
 
Although our recommendation is to map the survey area using multibeam prior to designing 
biological surveys, it is not always possible. One alternative approach, which tries to leverage as 
much multibeam information as possible, is to stage the sampling: perform a limited amount of 
multibeam mapping and work within those limited areas. Done smartly, like in Lawrence et al. 
(2015) this approach can still offer good estimates of biota. However, it is not without difficulties 
(principally in the analysis stage) and these complications could be, in some cases, overly limiting. 
 

2.8 Case Study: Surveying a Marine Park in Tasmania 

To illustrate some of the technical aspects of the design process, we plan a survey design for the 
Governor Island Marine Reserve off Bicheno on the East Coast of Tasmania. The marine protected 
area (MPA) is geographically complex with boundaries governed by natural land formations. The 
depth profile of the MPA is decreasing away from the land-based boundary, and there is less 
‘shallow’ regions in the MPA than ‘deep’ ones. 
 
We will present three designs. The first is a plain (vanilla) spatial design where all sites within the 
MPA are equally likely to be sampled. The second design intentionally samples shallow sites more 
often as these sites are likely to be more hetereogeneous and diverse than their deeper water 
counterparts. The third type of design is when there are legacy (reference) sites in the area that 
should be resampled as it is considered important to create a time-series for this MPA. The spatial 
balance should then account for the locations of these legacy sites when finding the new sites. For 
more details on how to perform this third type of design, please see the MBHdesign vignette (by 
loading the MBHdesign package into R and typing vignette( ‘MBHdesign’). Another good place to 
look is the paper describing the method: Foster et al. (2017). The inclusion of legacy sites in this 
example is somewhat artificial, as we have to first choose the legacy sites to incorporate. However, 
we hope that the process is illustrative nevertheless. 
 
The example here is performed in R, an open source statistical platform. Importantly, there are 
other free and licensed software and programming languages that can also be used, depending on 
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your proficiency and what is available to you. Some of the code may, at first glance, look a little 
daunting. Well, that’s R for you. Most of the lines written here are for plotting purposes and for 
reading in data. Since this is a document, we have taken some care with how the plots appear. This 
produces pretty(er) pictures but it also produces longer and more detailed code. Users should feel 
free to use the code below as a template, but please don’t blindly do so without thinking if the 
actions of the code is appropriate for your data. If you do re-use code, then please run checks to 
see if the code has done what you think that it ought to. 
 
If you are new to R, then you could try to get an introduction by one of the many online tutorials (e.g. 
https://cran.r-project.org/doc/manuals/R-intro.html). That particular one is likely to be like R helpfiles 
(helpful but takes time) and it could be quite dense. Another option is the excellent book Venables 
and Ripley (2002), which introduces you to R and gives a good introduction to some types of data 
analysis. Other recommended introductions to R include: Crawley (2007); de Vries and Meys 
(2015). However, these are just suggestions, you should shop-around until you find a 
reference/tutorial that is at-your-level and in no time at all you will be reading in data, analysing it, 
plotting it, and summarising results. 

2.9 Set Up R to Generate Design 

To start we have to set up R for generating designs. This should not be onerous in this case. The 
most difficult thing is in setting up the data file in the first instance (usually through a GIS). Here we 
have used an .asc file as this is relatively easy to read into R. This file is included in the field manual 
package, along with the R code to create the output below. 
 
This document was created using the R-package knitr (Xie, 2014). It is a wonderful tool, but like any 
tool it requires interpretation. Most notable here is that the R-code is placed in a grey box, to enable 
readers to highlight the code versus the document text. Within the code sections, anything that 
comes after a ‘#’ symbol is a comment that is not interpreted by R (most of these are a brown 
colour). Bold dark blue words are function names. Dark blue words are argument names. Green is 
for text and light blue for numbers.  
 
########################################################################### 
####    Read in Data from spatial data (.asc here) and Organise        #### 
####    Foster et al. NESP Biodiversity Hub Field Manuals              #### 

########################################################################### 

 
##if you don't have MBHdesign installed, please do so using 

# install.packages( "MBHdesign") 

 
#Load required packages 

library(MBHdesign) #For spatial sampling 
library(fields)  #for lots of things, but for plotting in this example 
library(sp)  #for reading the ascii file of cropped depths for the MPA 

 
#Set a seed for reproducability 
set.seed(666)  

 
#Read in depth as a asc file containing long, lat and depth 

#This path/file only exists on the first author's system 
#   you will need to change it if running this code 
#the projection will need to be changed for each region too 

#bth.orig.grid <- read.asciigrid("./ExampleGovIsland/gov_bth.asc", proj4string = 

https://cran.r-project.org/doc/manuals/R-intro.html
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CRS("+proj=utm +zone=55 +datum=WGS84")) 

bth.orig.grid <- read.asciigrid("gov_bth.asc", proj4string = CRS("+proj=utm +zone=55 

+datum=WGS84")) 

 
#convert to a data.frame for ease 
DepthMat <- as.matrix( bth.orig.grid)   
bth.orig.grid <- as.data.frame(  

  cbind( coordinates( bth.orig.grid), as.numeric( DepthMat))) 

colnames( bth.orig.grid) <- c("Easting", "Northing", "Depth") 

bth.orig.grid <- bth.orig.grid[order( bth.orig.grid$Northing, 
  bth.orig.grid$Easting),] 

#Setting up plotting for now and later 
uniqueEast <- unique( bth.orig.grid$Easting) 
uniqueNorth <- unique( bth.orig.grid$Northing) 

ELims <- range( na.exclude( bth.orig.grid)$Easting) 
NLims <- range( na.exclude( bth.orig.grid)$Northing) 
#Fix up ordering issue 

DepthMat <- DepthMat[,rev(1:ncol(DepthMat))] 
#plot it to see what we are dealing with. 
image.plot( uniqueEast, uniqueNorth, DepthMat,  

    xlab="Easting", ylab="Northing", main="Governor Island MPA",  

    legend.lab="Depth (m)", asp=1, ylim=NLims, xlim=ELims,  

    col=rev(tim.colors())) 
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Figure 2.1: Map of Governor Island study region with depths. Note the non-regular shape and the non-uniformity of the 

regions depth profile. 

2.9.1 Generate a spatially balanced design 

Generating a spatially balanced design within the MPA is quite straight-forward using MBHdesign. 
Here we do it for 30 sampling sites spread throughout the MPA (Figure 2.1). Note that designs will 
vary from one realisation to the next, unless the seed it fixed (like we did in the previous 
subsection). Try it a few times, if you like, and see what happens between the realisations. Note that 
on average (over all realisations) the spatially balanced designs will have good spatial coverage. 
 
########################################################################### 

####    Spatially balanced design -- uniform inclusion probs           #### 
####    Foster et al. NESP Biodiversity Hub Field Manuals              #### 
########################################################################### 
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#number of samples 
n <- 30 

#take the sample 
samp_spatialOnly <- quasiSamp( n=n, dimension=2,  

    potential.sites = bth.orig.grid[,c("Easting","Northing")],  

    inclusion.probs=!is.na( bth.orig.grid$Depth)) 

with( bth.orig.grid, image.plot( uniqueEast, uniqueNorth, DepthMat,  

    xlab="Easting", ylab="Northing", main="Spatially Balanced Sample",  

    legend.lab="Depth (m)", asp=1, ylim=NLims, xlim=ELims,  

    col=rev(tim.colors()))) 

points( samp_spatialOnly[,c("Easting","Northing")], pch=20, cex=2)  

write.csv(samp_spatialOnly, file="spatialOnly.csv", row.names=FALSE) 

 

 

Figure 2.2: A uniform inclusion probabiltiy sample for Governor Island 
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2.9.2 Preference shallow environments 

The equal inclusion probability design (Figure 2.2) assumes that all sites are equally advantageous 
to sample. Previously, we mentioned that this may not be an efficient approach to sampling. In 
particular, it can be advantageous to over-sample sites/regions that have greater variability. In the 
Governor Island MPA, this corresponds to the shallower depths as these typically are more 
heterogeneous and biodiverse on the east coast of Tasmania. We can design a survey with this in 
mind by increasing the probability that shallow sites will be sampled (i.e. by increasing their 
inclusion probabilities). This has the obvious effect of also decreasing the probability that deeper 
sites will be sampled (Figure 2.3). The code below shows how this can be done. It is a little more 
involved, but most of the complexity comes from detail. The approach is simple though: 1) find the 
empirical distribution of depths in the MPA; 2) define the inclusion probabilities based on this 
empirical distribution; and 3) sample according to those inclusion probabilities. We will sample a few 
more sites (n = 100), just to make the effect of the depth adjustment clear. 
 
########################################################################### 
####    Spatially balanced design -- Depth biassed inclusion probs     #### 
####    Foster et al. NESP Biodiversity Hub Field Manuals              #### 
########################################################################### 
 
par( mfrow=c(1,3), mar=rep( 4, 4)) 
n <- 100 
#The number of 'depth bins' to spread sampling effort over. 
nbins <- 4 
#force the breaks so R doesn't use 'pretty' 
breaks <- seq( from=min( bth.orig.grid$Depth, na.rm=TRUE),  
    to=max( bth.orig.grid$Depth, na.rm=TRUE), length=nbins+1) 
#Find sensible depth bins using pre-packaged code 
tmpHist <- hist( bth.orig.grid$Depth, breaks=breaks, plot=FALSE) 
#Find the inclusion probability for each 'stratum' 
tmpHist$inclProbs <- (n/(nbins)) / tmpHist$counts 
#Matching up locations to probabilties 
tmpHist$ID <- findInterval( bth.orig.grid$Depth, tmpHist$breaks)  
#A container for the design 
design <- data.frame( siteID=1:nrow( bth.orig.grid),  
    Easting=bth.orig.grid$Easting, Northing=bth.orig.grid$Northing,  
    Depth=bth.orig.grid$Depth, inclProb=tmpHist$inclProbs[tmpHist$ID])  
#Plot the depths and the inclusion probabilties 
with( design, plot( Depth, inclProb, main="Inclusion Probabilities",  
    ylab="Inclusion Probabilities", xlab="Depth (m)", pch=20, cex=1.4)) 
#Plot the inclusion probabilities in space 
with( design,  
    image.plot( uniqueEast, uniqueNorth,  
        matrix( inclProb, nrow=length( uniqueEast), byrow=FALSE),  
        xlab="", ylab="", main="Inclusion Probability", asp=1,  
        ylim=NLims, xlim=ELims)) 
#Take the Sample using the inclusion probabilities 
samp <- quasiSamp( n=n, dimension=2,  
    potential.sites = design[,c("Easting","Northing")],  
    inclusion.probs=design$inclProb, nSampsToConsider=100*n) 
#Plot the design 
with( design, image.plot( uniqueEast, uniqueNorth, DepthMat,  
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    xlab="", ylab="", main="Spatially-Balanced Sample", asp=1, 
    ylim=NLims, xlim=ELims, 
    col=rev(tim.colors()))) 

points( samp[,c("Easting","Northing")], pch=20, cex=2) 
write.csv( design, file="design.csv", row.names=FALSE) 

 

Figure 2.3: (Left panel) The empirical distribution of the 4 different depth bins. (Middle panel) The spatial distribution of the 

depth bins. (Right panel) A non-uniform spatially balanced sample, with inclusion probabilities based on the distribution of 

depths throughout the region. Shallow sites have been over-represented in the sample. 

2.9.3 Incorporate legacy sites 

Here, for edification purposes, we provide an illustration of how to design a spatially-balanced 
survey that accounts for the locations of legacy sites, which are those sites that we wish to include 
in the survey. The most likely reason for including legacy sites is that they have been sampled 
before, hopefully as part of a previous randomisation process. Various names exist for legacy sites, 
including ‘reference sites’, and perhaps even ‘sentinel sites’ in some situations. 
 
In our example, we first generate legacy sites and then generate more sites around them. To 
provide a little extra spice to the design we try to mimic the learning process: the n = 6 legacy sites 
are chosen with uniform probabilities (as we would do when there is no information about the area) 
and then the n = 15 new sites are chosen with a depth gradient altering the inclusion probabilities 
(Figure 2.4). This example therefore incorporates elements of the previous two examples. 
 
########################################################################### 

####    Spatially balanced design -- Legacy Sites (biassed incl probs) #### 
####    Foster et al. NESP Biodiversity Hub Field Manuals              #### 
########################################################################### 

 
#set up the plotting structure 
par( mfrow=c(2,2), mar=c(3,3,3,3)) 

#number of samples 
n_l <- 6 
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##Take the sample for the legacy sites.  
#Here they are a spatially balanced sample but in practice 

# they would be supplied from a previous randomisation process 
samp_legacy <- quasiSamp( n=n_l, dimension=2,  

    potential.sites = bth.orig.grid[,c("Easting","Northing")],  

    inclusion.probs=!is.na( bth.orig.grid$Depth)) 

#plot the legacy sites 
with( bth.orig.grid, image.plot( uniqueEast, uniqueNorth, DepthMat,  

    xlab="Easting", ylab="Northing", main="Legacy Sites",  

    legend.lab="Depth (m)", asp=1, ylim=NLims, xlim=ELims,  

    col=rev(tim.colors()), legend.mar=8.1)) 

points( samp_legacy[,c("Easting","Northing")], pch=17, cex=2)  

#plot the depth-based inclusion probabilities 

# scale first to sum to n=15 
n <- 15 

design$inclProb <- n * design$inclProb / sum( design$inclProb, na.rm=TRUE) 

with( design,  

    image.plot( uniqueEast, uniqueNorth,  
        matrix( inclProb, nrow=length( uniqueEast)),  

        xlab="", ylab="", main="Inclusion Probability", asp=1, 

        ylim=NLims, xlim=ELims, legend.mar=8.1)) 

##Depth-based inclusion probabilities 

#Alter the inclusion probabilities for the next sample 
# inclusion probs taken from previous example 
p2 <- alterInclProbs( legacy.sites=as.matrix(  

    samp_legacy[,c("Easting","Northing")]), 

    potential.sites=bth.orig.grid[,c("Easting","Northing")], 

    inclusion.probs=design$inclProb) 
#plot the altered inclusion probabilities 
with( design,  

    image.plot( uniqueEast, uniqueNorth,  
      matrix( p2, nrow=length( uniqueEast)), ylim=NLims, xlim=ELims, 

      xlab="", ylab="", main="Altered Inclusion Probability", asp=1, legend.mar=8.1)) 

##Take the new sample, spatially balanced around the legacy sites 

samp <- quasiSamp( n=n, dimension=2,  

    potential.sites = design[,c("Easting","Northing")],  

    inclusion.probs=p2, nSampsToConsider=100*n) 
#plot legacy sites and new sample sites. 

with( design, plot( Easting, Northing,  

    col=c('white',grey(0.9))[1+!is.na(inclProb)], ylim=NLims, xlim=ELims, 

    xlab="", ylab="", main="Combined Sample Locations", asp=1)) 

points( samp_legacy[,c("Easting","Northing")], pch=17, cex=2, col='red')  

points( samp[,c("Easting","Northing")], pch=20, cex=2)  

legend( "bottomleft", c("Legacy Sites", "New Sites"), pch=c(17,20), pt.cex=2, 

    col=c('red','black'), bty='n') 
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Figure 2.4: A spatially balanced design for Governor Island that incorporates legacy sites and has depth-varying inclusion 

probabilities (shallow sites are over-represented). 

2.9.4 Case study summary 

We have now seen how to generate three different kinds of designs: 1) a spatially balanced design 
with equal inclusion probabilities for when little is known about the sources of variation of the 
system; 2) a spatially balanced design with unequal inclusion probabilities for when we think we 
know where the locations with higher variance are likely to be; and 3) a spatially balanced design for 
when we have legacy sites that we want to take a repeat sample. 
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If future researchers wish to re-survey the area at some point in the future, then they have a choice 
to make: (I) Do they wish to revisit the same sites (to get a good temporal estimate)? (ii) Do they 
choose a new set of sites (to get a good spatial estimate)? Or, (iii) Do they assume that the 
temporal change is not important and include the previous survey as part of the sample? The last 
scenario would be performed efficiently by using the original sample locations as legacy sites and 
spatially balance the new sample locations around those (as was done in the example). It will 
usually be sensible to combine these objectives by repeating some (not all) of the samples but 
choosing some new locations as well. 
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Feedback on both these claims is welcome, as are suggested improvements. Please do so through the survey 

www.surveymonkey.com/r/CQKC688.  
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