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4.1   INTRODUCTION 
Remote sensing was long considered an obvious tool for studying the distribution of harmful 
algal bloom (HAB) organisms over larger spatial and shorter time scales than is possible with 
ship-based sampling (Tester et al. 1991; Keafer and Anderson 1993). Legacy and next-
generation instrumentation and sensors, including SeaWiFS, MODIS, MERIS, and the OLCI 
sensor on Sentinel-3, are dramatically improving the ability to determine constituents in the 
coastal ocean. Satellite altimeters and scatterometers also provide geophysical fields such as 
dynamic height (current patterns) and local winds (e.g. upwelling indices). Currently, 
MODIS Aqua and VIIRS are still operational, while the replacement for MERIS, OLCI, is 
now operational.  

In some regions, remote sensing has already become a valuable tool for helping to predict the 
onset, location, and transport of HABs. For example, in the Florida Shelf and Gulf of Mexico, 
SeaWiFS and MODIS imagery has been incorporated into the U.S. NOAA HAB Bulletin 
reports to identify potential red tide events, while feature-tracking has been used to follow 
the spatial transport of these events (e.g. Tester et al. 1991; Tester and Steidinger 1997). 
Progress has also been made on the use of inherent optical properties, derived from ocean 
color inversion algorithms, to identify functional phytoplankton groups based on 
fundamental biophysical properties (e.g. Lohrenz et al. 2003; Schofield et al. 1999).  

Although multi-spectral scanners (e.g. MODIS) can be used to detect the reflectance of 
chlorophyll a and other pigments with some accuracy, these efforts have been constrained by 
the inability of the sensors to discriminate phytoplankton populations at the species level. 
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This is, of course, a fundamental requirement of HAB programs. Instead, progress has been 
made by first linking specific water masses to HAB organisms and then identifying and 
tracking that water mass with an appropriate remote sensing technique. In particular, 
remotely-sensed sea surface temperatures (SST) have been used to follow the movement of 
fronts, water masses, or other physical features where HAB species accumulate. A 
fundamental problem for identifying HAB events, however, is that the imagery is still limited 
to identification of chlorophyll or other biomass proxies rather than individual organisms (at 
the genus or even functional group level).  

Satellite imagery by itself will simply not provide the specificity needed to identify particular 
organisms. Recent advances have begun to extend our ability to use remote sensing beyond 
simple bulk chlorophyll measurements, however. For example, considerable work has gone 
into identifying phytoplankton functional groups, or groupings of optically similar organisms 
such as diatoms, dinoflagellates, and coccolithophorids. In some specific cases, optical 
estimates (either from in-water measurements or remote sensing) can be used to identify 
particular organisms, as some have unique optical properties. This includes Karenia brevis, 
Trichodesmium spp., and cyanobacterial (blue-green) algal blooms (Alvain et al. 2008; 
Stumpf et al. 2003; Westberry et al. 2005; Wynne et al. 2008). While diatoms and 
dinoflagellates are very similar optically, and both can cause high biomass events, there 
appear to be enough differences to discriminate between dinoflagellate- and diatom-
dominated surface waters as well (Dierssen et al. 2006; Palacios 2012).  

In addition to the limitations of optical methods (including remote sensing) for the 
identification of specific HAB organisms, another problem arises when imaging high 
biomass blooms. When the biomass exceeds ~50 mg/m3 total chlorophyll, standard satellite 
algorithms (e.g. MODIS OC3 or MERIS Algal-2) often fail because the water-leaving 
radiances are high enough to trigger atmospheric correction failures. This results in 
consistent underestimates of high biomass events in coastal waters. This can be remedied 
relatively easily by the use of non-standard ocean color products. For example, Kahru and 
Mitchell (2008) showed that the 250 m resolution bands on the MODIS satellite can be used 
to develop a “particle index” that closely tracks red tides, while also providing the highest 
possible spatial resolution. Hu et al. (2005) advocated the use of fluorescence bands for the 
same reason; a second advantage is that only chlorophyll-containing particles strongly 
fluoresce, solving the issue of working in optically complex coastal waters. Chen et al. 
(2009) extended this by using multiple bands (fluorescence line height (FLH), backscatter, 
etc) to develop a “machine learning” algorithm that can detect red tides. Given enough data it 
is also possible to develop region-specific algorithms that work better than the global 
methods (Kahru et al. 2012).  

To summarize, using modern methods and data freely available from several ocean color 
sensors, it is currently possible to identify high biomass HAB events (e.g., red tides), 
although this requires application of non-standard products. The biomass estimates can be 
further categorized into phytoplankton functional types, potentially useful for identifying 
subclasses of blooms such as high biomass dinoflagellate events. These methods require 
more effort and access to some laboratory or field optical measurements to parameterize the 
models. It is not currently possible (and is unlikely to become possible) to identify species of 
algae from space. When combined with other data streams such as currents, field 
measurements, and in-water monitoring programs, unusual events can be identified, tracked, 
and the subsequent impacts predicted if there are independent means of identifying the 
organisms. This is most effective when remote sensing is combined with in-water 
observations as part of an ocean observing program (see Chapter 3; Frolov et al. 2013; 
Kudela et al. 2013). 
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4.2   AVAILABILITY OF DATA AND SOFTWARE 
A large amount of satellite data on ocean colour is freely available for users, though some 
expertise is needed to use and interpret it. Downloading data from the web sites of the ESA 
(European Space Agency) and NASA (U.S. National Aeronautics and Space Administration) 
is straightforward. Free software such as SeaDAS and SNAP makes it feasible to work with 
ocean color data on personal computers, and the NASA Ocean Biology Processing Group 
offers a forum for technical support. Data suitable for automated downloading are also 
available from sites such as the U.S. National Oceanic and Atmospheric Administration 
(NOAA) via ERDDAP. Here the focus is on the most common satellites and sensors 
described above. As of 2016, this limits data primarily to NASA MODIS (and VIIRS) 
sensors, and ESA MERIS (and OLCI) sensors. Expert users may also take advantage of 
Landsat8 (US Geological Survey), Sentinel-2 (ESA), and the various sea surface temperature 
sensors (e.g. AVHRR). The European Space Agency also supports SNAP for use with the 
Sentinel platform; it is based on the same system as SeaDAS. Some example links for those 
data products are provided here, but exhaustive descriptions of all sensors and products is 
beyond the scope of this chapter. 

4.3   INTERNET ACCESS TO IMAGERY 
The simplest way to identify blooms with satellite imagery is to take advantage of standard 
(global) processing that makes both data and imagery available via web browsers. As 
described below, these standard products include RGB, chlorophyll, nFLH, and other 
products such as light attenuation depth, particulate backscattering (a useful indicator of 
particle load), colored dissolved organic material, and various other products. Data are 
typically divided into categories. Level-1 (L1) are “raw” data, suitable for reprocessing by 
the end-user. Level 2 (L2) include derived products such as chlorophyll, and have been 
atmospherically corrected. The L2 files may also be projected to a standard map. Level 3 
(L3) are binned in space, time, or both. L3 imagery is often at reduced spatial resolution 
(typically 4 or 9 km). Standard L2 products are typically at 1 km resolution, and with some 
sensors (MODIS, MERIS) reprocessing of L1 data can generate imagery at 250-300 m 
resolution.  
4.3.1   Access to L1, L2 and L3 images 

NASA provides two portals that make it easy to access L1, L2 and L3 data. The WorldView 
site (http://worldview.earthdata.nasa.gov ) provides a graphical interface that can display 
many types of satellite (and other) data using a graphical user interface. This is an excellent 
tool for quickly examining recent imagery, but the data are spatially binned and thus provide 
limited spatial resolution. Figure 4.1 provides a snapshot of MODIS chlorophyll for the same 
region used in section 4.3. 

The NASA Ocean Biology Processing Group, OBPG, (http://oceancolor.gsfc.nasa.gov/cms/) 
provides the same data as WorldView, along with many other satellite products including 
MODIS Aqua and Terra, MERIS, and VIIRS. From this site it is possible to view L1, L2, and 
L3 imagery at various resolutions, and to download data directly for further processing. 
Figure 4.2 provides a screenshot of similar data as shown in Figure 4.1, but for the entire 
globe. These data (Figure 4.2) can be directly downloaded.  

The ERDDAP site (http://coastwatch.pfeg.noaa.gov/erddap/griddap/documentation.html) 
provides access to a subset of the same data provided by WorldView and OBPG, but is set up 
primarily for machine-to-machine access. Using this site it is possible to set up automated 
extraction of a particular region, to download large amounts of data, and to create time-series. 
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Finally, the Giovanni site, run by NASA (http://giovanni.sci.gsfc.nasa.gov/giovanni/) 
provides many options for accessing NASA data, including generation of individual images, 
time-series, and other specialized analyses. At this time (July 2017) Giovanni has not moved 
most reprocessing of NASA ocean color data to the system. While Giovanni only provides 
limited data (i.e. L3 data), it makes it simple to extract time series of several standard 
products for a given location. All of the processing and data extraction is completed on 
NASA servers, and the end-user is given both graphical images and the option of 
downloading the original data. Figure 4.3 provides an example of a chlorophyll time-series 
extracted from the Fujairah, UAE desalination intake site, for 1998-2015. 

 
Figure 4.1. A screen shot of the NASA WorldView site. 

 
Figure 4.2. A screen shot of the NASA OBPG site showing L3 chlorophyll at 4 km resolution for 15 
January 2016.  
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4.3.2   Data subscription services 

In addition to viewing/accessing data interactively, it is possible to define a specific region or 
regions and set up a data subscription with the NASA OBPG system. This requires the user 
to register with NASA, but the service is free and the registration process is straightforward. 
Access to the service is at this website: 
http://oceancolor.gsfc.nasa.gov/sdpscgi/public/subscriptions_home.cgi 
Once registered, the user can request either a non-extracted or extracted region globally. 
Currently MODIS Aqua, MODIS Terra, and VIIRS are available. Start and end dates are 
selected, along with a geographical region. Various products are available (depending on the 
sensor) including chlorophyll, nFLH, SST, and RGB. The user can request images (emailed 
to your account), data files, or both. For data, the user can further specify L1 or L2 files. This 
is particularly useful because the data will always be processed with the most current version 
of the OBPG processing routines. 

4.4   SOFTWARE FOR PROCESSING SATELLITE DATA 
NASA recently (~2015) changed formats from Hierarchical Data Format (HDF) to netCDF 
4.0. ESA also generates data as netCDF 4.0. The advantages of these formats are that they are 
“self-contained”, including metadata and data within one “container”. Any software that can 
access netCDF or HDF files can be used to process satellite imagery, including (e.g.) Python 
and MATLAB, other programming languages, or specialized software designed to work 
directly with the imagery.  
Freely available, commonly used, and highly recommended satellite processing software are 
provided by both ESA and NASA. These include SeaDAS software (NASA) and SNAP 

 
Figure 4.3. Time-series of chlorophyll extracted from the Fujairah, UAE desalination plant intake location. 
The inset shows the full range of the data, while the main graph was truncated at 30 mg/m3.  
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software, which recently replaced BEAM (Brockman Consulting, created for ESA). The most 
recent versions of SeaDAS are based on BEAM, so the two software sets are somewhat 
interchangeable. SeaDAS provides extra processing options specific to NASA processing 
(the OBPG), while BEAM/SBAP provides tools specific to ESA processing (MERIS, OLCI, 
Sentinel-2).  
4.4.1   Hardware requirements 

Both SeaDAS and BEAM operate on standard personal computers (Windows, OS X, Linux). 
The only requirement is that Java is available. Satellite data are often very large, however, so 
it is recommended that a dedicated hard-drive be available for more extensive processing. 
Both SeaDAS and BEAM process much of the data “on the fly”, as well, so they can tax 
systems with limited amounts of RAM. For routine processing 4-8 GB RAM is usually 
sufficient. For processing of time-series or very large (high resolution) imagery, it may be 
necessary to access up to 32 GB RAM, particularly if the computer is also being used for 
other tasks. Both programs provide rich processing capability that is beyond the scope of this 
Chapter. Either can be used to visualize and process satellite data obtained at L0 (completely 
unprocessed), L1, L2, or L3 levels.  

4.4.2   SeaDAS software 
SeaDAS is provided for free by the NASA OBPG group. It can be downloaded directly from 
NASA and comes precompiled for various operating systems. SeaDAS can be installed as a 
GUI (basic use) and as processing code (expert use) for processing of satellite data using 
low-level scripts. NOTE: the Windows version can be used to visualize data, but does not 
include the low-level processing programs.  
The SeaDAS development released SeaDAS 7.4 in March 2017, which is built atop a 
modified version of BEAM. The science processing code has been updated to reflect changes 
recently implemented in production, providing bug fixes and support for the R2014.0 
reprocessing for SeaWiFS. As long as the most recent version of SeaDAS is used, processing 
should be identical to the NASA OBPG products. 

4.4.3   BEAM and SNAP software 
BEAM is an open-source toolbox and development platform for viewing, analyzing and 
processing remote sensing raster data. Originally developed to facilitate the utilization of 
image data from Envisat's optical instruments, BEAM supports a growing number of other 
raster data formats such as GeoTIFF and NetCDF as well as data formats of other Earth 
Observation sensors such as MODIS, AVHRR, AVNIR, PRISM, and CHRIS/Proba. Various 
data and algorithms are supported by dedicated extension plug-ins. The primary tool is 
VISAT - an intuitive desktop application to be used for visualization, analyzing and 
processing of remote sensing raster data. As with SeaDAS, access to low-level processing 
scripts are also available for expert users. BEAM was replaced by SNAP, which is 
functionally similar but supports the most recent satellite platforms and processing methods.  
4.5   ALGORITHMS USED TO DETECT BLOOMS 

4.5.1   Atmospheric correction 
Many regions where desalination is used, such as the Arabian Sea and Sea of Oman, are 
subject to severe dust and other atmospheric conditions that cause problems for the standard 
processing provided by NASA and ESA. These atmospheric correction issues are 
exacerbated by high-biomass events, which often trigger correction failures (Loisel et al. 
2013). It is possible to recover much of the “lost” data by switching to non-standard 
atmospheric correction. This is time-consuming and requires optimization of the 
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methodology. A more straightforward approach is to use algorithms that rely upon the shape 
of the ocean color spectra (spectral shape algorithms) that are applied with simple 
atmospheric corrections, or with no atmospheric correction at all. These rely on fairly 
standard products from the satellite processing, but are not routinely available without end-
user processing. Some of the algorithms below take advantage of these methods, but 
“standard” products using NASA and ESA atmospheric correction are also discussed.  

4.5.2   Algorithms 
There is no HAB-specific remote sensing algorithm, but there are several methods that work 
well for identifying high-biomass bloom events. Most of these belong to a class called 
“spectral shape” algorithms. In contrast to chlorophyll methods, which generally use band 
ratios (typically the ratio of blue to green light), spectral shape methods rely on changes that 
occur over 3 or more bands (colors). The advantage of these algorithms is that they are much 
less sensitive to atmospheric correction issues, since it is the shape rather than the absolute 
values that identify the property of interest. These are also sometimes called linear baseline 
algorithms since, functionally, they are often calculated as the height of a peak above a 
baseline of two other wavelengths. This is how both FLH (fluorescence line height) and MCI 
(maximum chlorophyll index) are determined. Table 4.1 provides a list of algorithms 
commonly used for red tide detection. 

Table 4.1. Commonly used remote sensing algorithms. The first three are available without 
additional end-user processing; the remainder require some expertise.  

Target Method Reference 

Biomass Chlorophyll Standard product 
Chlorophyll fluorescence Fluorescence line height 

(FLH), normalized 
fluorescence line height 
(nFLH) 

Standard product 

True-color image Red-Green-Blue (RGB), 
Enhanced Red-Green-Blue 
(ERGB) 

Standard Product 

High biomass Maximum chlorophyll index 
(MCI), Red band difference 
(RBD), maximum peak 
height (MPH) 

Gower et al. 2005, Ryan et 
al. 2014; Amin et al. 2012; 
Matthews et al. 2012 

High biomass 250 m band subtraction Kahru et al. 2008 
Floating Algae Floating Algae Index (FAI) Hu, 2009 
Noctiluca Spectral Shape Astoreca et al. 2005 

Trichodesmium Spectral Shape Hu et al. 2010 

 
4.5.2.1   Standard algorithms 

These algorithms are standard products provided by NASA and ESA, and do not require any 
special processing or effort. They are commonly available from multiple locations on the 
Internet.  
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4.5.2.2   High biomass algorithms 
This group of algorithms relies upon changes in spectral shape as phytoplankton biomass 
increases. As described in Ryan et al. (2014), the primary issue with these algorithms is that 
they are sensitive to the biomass concentration. Below ~25 mg/m3 chlorophyll, MODIS FLH 
works well. Above about 50 µg/L, MERIS MCI works well. It is possible to develop a single 
algorithm that works for all biomass levels (Ryan et al. 2014) given higher resolution spectral 
data, such as is available from HICO, but this will not be routinely available for 5-10 years, 
when the next-generation satellites launch. An alternative to these methods is to create an 
image of scattering (particles) from the “green” part of the spectrum. This is how the band-
subtraction method (Kahru 2008) works. The advantage of this method is that it can use the 
high-resolution 250 m bands from MODIS, and is straightforward. This method can also be 
applied to either atmospherically corrected or non-atmospherically corrected data. The 
Floating Algal Index (FAI) is another variation on these methods that takes advantage of 
reflectance in the near-infrared caused by surface scums or floating algae.  

4.5.2.3   Noctiluca algorithms 
The heterotrophic dinoflagellate genus Noctiluca is a relatively common bloom-forming 
organism in many areas of the world, including the Gulf1 and Sea. It occurs as both “red” and 
“green” varieties, with the less common green variety colored by a prasinophyte symbiont 
(Harrison et al. 2011). Red Noctiluca is the unpigmented heterotrophic version, but it often 
discolors the water (reddish, or “tomato soup” color) due to a combination of its ingested 
prey items, internal symbionts, and high reflectance in the red and near-infrared. Remote 

sensing has been used 
successfully in previous 
studies (e.g. Gomes et al. 
2008; Piontkovski et al. 
2011) to infer bloom 
dynamics of Noctiluca by 
combining general products 
such as chlorophyll 
climatologies and anomalies 
with in-water data and 
observations of currents, sea 
surface temperature, and 
mixed-layer depth.  

Red Noctiluca has somewhat 
unique properties (Figure 
4.4), particularly the strong 
absorption feature between 
480-530 nm leading to a 
sharp increase in reflection 
from 520-580 nm (similar to 
the “red edge” effect in kelp 
and higher plants). It also 
exhibits very strong 
reflectance in the red and 

                                                
1 Here the Gulf refers to the shallow body of water bounded in the southwest by the Arabian Peninsula and Iran 
to the northeast. The Gulf is linked with the Arabian Sea by the Strait of Hormuz and the Gulf of Oman to the 
east and extends to the Shatt al-Arab river delta at its western end. 

Figure 4.4. Red Noctiluca exhibits unusual optical properties, including 
the inflection at around 530 nm, the sharp increase from 480-580 nm, 
and the extremely high reflectance in the red and near-infrared. Adapted 
from Astoreca et al. 2005. 
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near-infrared (NIR; 650-850 nm). While this makes it relatively easy to identify Noctiluca 
from high-resolution in-water or even airborne data, the lower spatial and spectral resolution 
of most satellites is problematic. The strong NIR reflectance is qualitatively similar to 
suspended sediments, making it easy to misinterpret imagery, while the edge effect in the 
~580 nm region requires increased spectral resolution. 
4.5.2.4   Trichodesmium algorithms 

Colonial cyanobacterium (blue-green algae) Trichodesmium blooms (mostly Trichodesmium 
erythraeum) occur regularly in the Arabian Sea, Sea of Oman, Indian Ocean, Gulf of Mexico, 
and Atlantic, and have	   been proposed to serve as a significant nitrogen source for some 
regions. Detection of Trichodesmium blooms from space has been of interest since the 1980s. 
Early attempts used empirical algorithms developed for the Coastal Zone Color Scanner 
(CZCS). More recent efforts focused on the inherent and apparent optical properties (spectral 
absorption, backscattering, and reflectance) of Trichodesmium and on the development of 
empirical (Subramaniam et al. 2002) and semianalytical algorithms (Westberry et al. 2005) 
for application to multispectral data from SeaWiFS and MODIS.  
These algorithms were developed for optically simple open ocean waters, and frequently 
over- and underestimate Trichodesmium blooms in more complex coastal waters. To address 
this problem, Hu et al. (2010) proposed to use a spectral shape algorithm derived from the 
same processing used for the Floating Algal Index (FAI). The algorithm is based on the 

unique scattering and absorption 
properties of Trichodesmium, but 
is more complicated than simple 
linear baseline methods in that it 
uses multiple wavelengths in the 
visible. While it works well with 
atmospherically corrected data, as 
with most spectral shape 
approaches it is relatively robust to 
errors in the correction, since the 
diagnostic is the shape of the 
spectra rather than the absolute 
values of the wavelengths. Hu et al. 
(2010) demonstrated that this 
method works well in coastal 
waters, although it does require 
manual processing of the data 
(necessary for inspection of the 
spectral shape). The processing 
steps start with simple atmospheric 
correction of the satellite data to 
remove the effects of Rayleigh 
scatter. The FAI is then calculated. 
For pixels with positive FAI, the 
spectral shape is then examined 
(Figure 4.5).   

4.6   EXAMPLES OF ALGORITHMS 

The algorithms discussed above can generally be divided into two categories. Those that are 
provided by NASA and ESA and do not require any extra effort, and those that require the 

 
Figure 4.5. Spectral remote sensing reflectance from the MODIS 
sensor for Trichodesmium on the West Florida Shelf (WFS), with 
corresponding high-resolution data from the Florida Keys 
collected on 7/1/1997. For comparison, Sargassum is shown from 
the Western Gulf of Mexico (WGOM). All of these blooms show 
up as positive FAI (as would dense blooms of Noctiluca and 
Cochlodinium). Trichodesmium has a unique spectral shape, 
however, with a high-low-high-low-high pattern at 469-488-531-
555 nm (MODIS bands, dashed circles). Other sensors with bands 
in this range would detect the same pattern. Figure adapted from 
Hu et al. 2010.  
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end-user to conduct additional processing. In practice it is common to use several algorithms 
(images) and to compare the results from each to develop an informed understanding of the 
dynamics of a region. Here an example from the Arabian Sea and Sea of Oman is used to 
highlight how these algorithms compare. Abbreviations are given in Table 4.1.   

Figure 4.6 provides an image from the Oman/UAE region for 23 December 2008, using the 
NASA MODIS Aqua satellite. At the time, a massive red tide of the dinoflagellate 
Cochlodinium had extended throughout the region. Standard products available from NASA 
include truecolor, or RGB (panel A), Chlorophyll (panel C), Sea Surface Temperature (panel 
D; note that MODIS Terra was used, and that some data are missing, denoted by the black 
region), and normalized Fluorescence Line Height, nFLH (panel F). End-user processing of 
the files produced an Enhanced RGB image (panel B), the RBD (panel E) and FAI (panel G) 
images, and spectra (panel H) were extracted using the SeaDAS processing program. 

Starting with the RGB and ERGB, it can be seen that it was a cloud-free day with little to no 
dust in the atmosphere. Shallow regions where bottom-reflectance occurs can be seen in the 
Strait of Hormuz and around the UAE coastline—these areas show up as “bright” areas in the 
water, and can result in artificially high (false) chlorophyll values. The ERGB does better at 
highlighting the extent of the bloom (compare A, B, C). In the chlorophyll image (C) there 
are several regions with missing data (white). Since there were no clouds, this indicates a 
failure of the chlorophyll algorithm, typically in very high (red tide) patches. This is also 
apparent in nFLH (F). In contrast, RBD (E) does not have those missing data; this is 
particularly important along the coast where impacts are likely to occur, since relying solely 
on the chlorophyll (or nFLH) imagery would suggest that there are no data available. 
Comparing C and F, some places where there is supposedly high chlorophyll have little or no 
fluorescence, suggesting that the “chlorophyll” was contaminated by bottom reflectance. 
Finally, FAI (G) picks out the most intense surface patches of chlorophyll. Two regions are 
circled (dashed lines) and the spectra are shown in panel H. The southern patch, offshore of 
Oman, shows the characteristic up-down-up spectral shape of Trichodesmium, suggesting 
that in addition to the Cochlodinium red tide along the coast, there were also patches of 
floating algae offshore. The other region (north) has a spectra indicative of dinoflagellates, 
with a pronounced green peak and another red/near-infrared peak.  

These images show why it is useful to compare several products in order to understand the 
dynamics of the region. Any single product (algorithm) provides similar patterns, but does 
not provide all the information available from the satellites. Of course, data are only available 
when it is not cloudy, and it is critical to have local validation of the satellite products to 
ensure that interpretation is correct. 
4.7   SUMMARY FOR END-USERS 

Numerous free data products are available that provide useful and relevant information for 
tracking algal blooms in coastal waters, with many new sensors coming online. For new users, 
an excellent starting-point is one of the web-based systems to routinely visualize the region 
of interest and become familiar with the general oceanographic patterns and data availability. 
From there, basic data analysis, such as generation of time-series for a given location, can be 
attempted. If in-water or plant-based data are available it is straightforward to extract data 
using, for example, the Giovanni website to explore correlations between satellite 
observations and local conditions. As the end-user becomes more familiar with the available  
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Figure 4.6. MODIS Aqua data from 23 December 2008 during a red tide event. A: RGB; B: ERGB; C: 
chlorophyll; D: SST; E: RBD; F: nFLH; G: FAI; H: spectra from the circled region in G. See the text for a full 
description. 
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data and limitations, the final step is to acquire and process data directly, using either 
standard algorithms, or taking advantage of the tools available in both SeaDAS and BEAM 
for non-standard algorithms. An excellent resource for this last step are self-guided tutorials 
available online (https://www.youtube.com/results?search_query=seadas). At the time of 
publication, the main satellite processing tools (SeaDAS, BEAM, SNAP) are all based on the 
same underlying computer code, so an end-user familiar with SeaDAS will quickly be able to 
use any of these packages. With the basic information provided in this chapter, an end-user 
can quickly progress from casual use of satellite images to routine production of regionally-
adjusted datasets suitable for research and monitoring.  
4.8   USEFUL LINKS TO SATELLITE BASED OCEAN COLOR DATA 

General 
European Space Agency:  http://sentinel.copernicus.eu 

NASA: http://oceancolor.gsfc.nasa.gov/cms/ 
USGS: http://earthexplorer.usgs.gov 

Data Access 
NASA WorldView: https://worldview.earthdata.nasa.gov 

NASA Ocean Biology Processing Group: http://oceancolor.gsfc.nasa.gov 
NASA Data Subscriptions: 
http://oceancolor.gsfc.nasa.gov/sdpscgi/public/subscriptions_home.cgi 
Old Giovanni Site: http://gdata1.sci.gsfc.nasa.gov/daac-
bin/G3/gui.cgi?instance_id=ocean_8day 
New Giovanni Site: http://giovanni.sci.gsfc.nasa.gov/giovanni/ 

NOAA ERDDAP: 
http://coastwatch.pfeg.noaa.gov/erddap/griddap/documentation.html 

SST and other Data Visualization: http://podaac-tools.jpl.nasa.gov/soto-
2d/soto.html?layers[]=jpl_ourocean_l4___sst___36000_x_18000___daynight&date=
2016-01-11 
SST Data: https://podaac.jpl.nasa.gov/GHRSST 

Software 
NASA SeaDAS: http://seadas.gsfc.nasa.gov 

ESA BEAM: http://www.brockmann-consult.de/cms/web/beam/ 
ESA SNAP: http://step.esa.int/main/toolboxes/snap/ 
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