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7.1   INTRODUCTION 
Harmful algal blooms (HABs) are a serious and growing problem to many sectors of society, 
including the desalination industry. The many problems that HABs present for seawater 
reverse osmosis (SWRO) desalination plants include: 1) the production of dangerous toxins 
that have the potential to contaminate treated water; 2) high algal biomass that clogs intake 
filters; and 3) contributing to biofouling of equipment and SWRO membranes.  

It is important to limit the impact from HABs by preventing blooms from reaching SWRO 
plants in the first place, while also reducing their effects in the event that ingress to the plant 
has occurred. Many of the management actions taken to respond to HABs can be termed 
mitigation – i.e., dealing with an existing or ongoing bloom, and taking whatever steps are 
necessary or possible to reduce negative impacts. Mitigation strategies can be classified into 
two categories, precautionary impact preventions and bloom controls (Kim 2006; Anderson 
2004). Precautionary impact preventions refer to monitoring, predictive, and emergent 
actions - essentially actions taken to keep HABs from happening or from directly impacting a 
particular resource. Several problems are immediately apparent in this regard. For one, we do 
not have all of the knowledge we need about why HABs form in many areas, so it is 
obviously difficult to regulate or control those factors. This argues for substantial and 
sustained research on all aspects of HABs, including their ecology, physiology, and 
oceanography. All too often managers and agency officials view these topics as fundamental 
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or basic science issues that have little direct practical utility, but in reality, such knowledge is 
essential for the design and implementation of effective prevention strategies. 

Another problem that arises with the concept of HAB prevention is that even if certain 
environmental factors are known to influence the population dynamics of a specific HAB 
organism, there are limitations on what can feasibly be done to modify or control those 
factors. It might be known that a particular HAB is strongly influenced by the outflow of a 
river system – that it is associated with a buoyant coastal current, for example - but are 
unlikely to be able to justify the alteration of that river flow solely on the basis of HAB 
prevention. As discussed below, it is nevertheless important to factor the possible impacts on 
HABs into large-scale policy decisions on such topics as pollution reductions or alterations in 
freshwater flows in response to agricultural and drinking water demands.  
Obvious examples of impact prevention in the context of desalination are pretreatment 
strategies that remove cells and the organic compounds they produce. These are described in 
Chapter 9. In effect, these strategies are used to cope with HABs and to manage around them. 
The question often arises, however, as to whether it is possible to be more pro-active. Can 
something be done about blooms before they happen, or can something be done to destroy or 
suppress them while they are occurring? These questions highlight the “control” aspects of 
HAB management. 

Bloom control is both challenging and controversial. The concept refers to actions taken to 
suppress or destroy HABs, intervening directly in the bloom process. Curtailing or 
suppressing the duration and magnitude of a HAB through physical, chemical, or biological 
intervention are potential approaches, but this is one area where HAB science is rudimentary 
and slow moving. Anderson (1997) highlighted the slow research progress on bloom control, 
in contrast to aggressive policies to control pests and nuisance species in terrestrial 
agriculture. A number of reasons were listed for the reticence or reluctance of scientists and 
managers to explore and implement control strategies. These include:  

•   HABs are complex phenomena in highly dynamic environments. Many are large, 
covering thousands of km2. Control strategies would be massively expensive and 
logistically challenging.	
  

•   HABs are caused by algae from many phylogenetic clades (see Chapter 1), including 
eukaryotes (armored and unarmored dinoflagellates, raphidophytes and diatoms, 
euglenophytes, cryptophytes, haptophytes, pelagophytes, and chlorophytes) and 
microbial prokaryotes (cyanobacteria that occur in both marine and freshwater 
systems). Given this biodiversity, no single strategy or approach to bloom control or 
suppression will apply to all harmful algae.	
  

•   HAB phenomena remain poorly understood, i.e.,“we can’t control what we don’t 
understand”.	
  

•   Few, if any, countries have government agencies with the mandate to conduct 
research or to implement strategies to control marine “pests”. 	
  

•   The solutions may cause more damages than do the HAB problem being treated.	
  
Each of these arguments has a counter argument, as discussed in Anderson (2004), but the 
bottom line is that progress on bloom control has been slow, with advances being made by 
only a few countries. The challenge is even more significant when viewed in the context of a 
desalination plant. In the discussion that follows, traditional and emerging technologies in the 
field of HAB mitigation and control are summarized in the context of their applicability to 
HAB risk management at SWRO desalination plants. In doing this, it is recognized that 
desalination plants are unlikely to undertake any large-scale bloom control or suppression 
strategies outside their plants, given the cost, logistics, and uncertainty of such efforts. It may 
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be that bloom control would be considered at a small scale within an embayment or intake 
lagoon, and thus it is important to know the various approaches that have been attempted in 
different systems. This will also help operators address a very common question from the 
public, or from plant management – “Is there anything we can do to control or stop this 
bloom before it enters the plant?”  
7.2   BLOOM PREVENTION 

7.2.1   Nutrient load reduction 
For many HABs, particularly those caused by freshwater or brackish water cyanobacteria or 
nearshore or estuarine dinoflagellates, the reduction of nutrient inputs is an appropriate 
strategy for preventing and/or limiting bloom magnitude. In the context of a desalination 
plant, it is obviously not feasible for a plant to alter regional nutrient inputs. If HAB problems 
persist in an area, the plant can, however, join with other advocates of pollution controls to 
help reduce the nutrient loadings which often favor HAB development (Anderson et al. 2002; 
Heisler et al. 2008).  

7.2.2   Nutrient load 
An example of major intervention in manipulating nutrient loads to coastal waters is the 
brackish Baltic Sea. The Baltic has a long and on-going history of hypoxia and fish kills 
associated with cyanobacterial blooms, such as Nodularia spumigena (Zillén et al. 2008). 
Agriculture is the largest source of nitrogen entering the Baltic, but point source discharge of 
sewage makes up a significant fraction of the load. To respond to these inputs, Sweden has 
adaptively managed sewage outflow by intermittently releasing more N into surrounding 
waters when there is a high risk of encouraging potentially toxic blooms of cyanobacteria 
species, some that are N2-fixers (i.e., the cells use elemental nitrogen from the atmosphere to 
form nitrate and thereby grow in waters that have low N:P ratios). If additional N is supplied 
to the system, however, they are less likely to bloom (Elmgren and Larsson 2001). After the 
Helsinki Convention of 1974, these Baltic blooms have been largely controlled by heavy 
restrictions on land-based nutrient pollutants. 
A second example is from Lake Erie, the shallowest, warmest, and most human-impacted of 
the Laurentian Great Lakes in North America. While not a coastal system, its large size and 
far-reaching impacts make it a good case study for marine HAB control in the context of 
desalination plants. The predominant bloom species in this region is Microcystis aeruginosa, 
a cyanobacterium that produces the hepatotoxin, microcystin. Importantly, and with direct 
relevance to desalination, this freshwater toxin is now a known contaminant of coastal marine 
waters as well due to its ability to move unaltered from watersheds to the ocean (Miller et al. 
2010). Phosphorus abatement strategies in the late 1970s successfully suppressed blooms of 
cyanobacteria in Lake Erie, but only until 1995 when an invasion of foreign mussels 
(Dreissena polymorpha and D. bugensis, zebra and quagga mussels, respectively) opened an 
ecological niche for Microcystis by selectively feeding on its competitors (Budd et al. 2001; 
Juhel et al. 2006). As a result, a water treatment plant in Ohio, USA detected microcystin at 
concentrations more than threefold higher than the WHO threshold of 1.0 part per billion 
(ppb) in drinking water. This forced a shutdown of the municipal water supply (Henry 2013), 
an event that was repeated in Toledo, Ohio in 2014 affecting nearly 500,000 people (Nelson 
2015). Adaptive control of N and P akin to strategies in the Baltic Sea may be an effective 
way to limit M. aeruginosa blooms in freshwater systems where drinking water is either 
directly filtered or where adjacent coastal regions/SWRO plants may be affected by the toxin. 
Ultimately, reductions in nitrogen and phosphorus must be considered as freshwater, brackish, 
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and oceanic system productivity (including HABs) responds spatially and seasonally to both 
nutrients (Fisher et al. 1999; Conley et al. 2009; Smith and Schindler 2009). 

7.2.3  Hydraulics 
Decreasing residence times in some inland systems through alteration of river flows and 
flushing rates can reduce blooms of cyanobacteria (Maier et al. 2004; Paerl 2014). Sellner et 
al. (2015) documented the potential role of rapid flushing of ponds, lakes, or basins in 
limiting recurrence of M. aeruginosa blooms in the coastal plain of Maryland, USA. The 
process relies on elevated bottom shear stress to resuspend and then advect (transport) 
overwintering populations of the Microcystis to systems downstream into waters less 
favorable for growth. Similar hydraulic control of recently settled HAB populations might be 
feasible for intake lagoons or holding ponds where treatment plant waters might be 
manipulated to purge vegetative or resting stages of HAB taxa periodically from direct intake 
into the SWRO plant. 
7.2.4   Mixing/destratification 

Several physical disturbance methods are now being tested that may not translate well to the 
open, coastal zone, but 
may be highly 
applicable to intake 
lagoons or holding 
ponds given their 
success in lakes and 
fjords. These include 
sediment capping with 
chitosan - modified 
sands (Pan et al. 2012), 
dredging of nutrient-
rich waters to reduce 
cyanobacterial bloom 
initiation followed by 
application of 
Phoslock® to trap and 
sequester dissolved 
phosphorous (Lürling 
and Faassen 2012), and 

even solar-powered circulation to disturb cyanobacterial habitat in freshwater systems 
(Figure 7.1; Hudnell et al. 2010).  

Another novel and potentially environmentally benign approach to control blooms of cyst-
forming HAB species (e.g., Alexandrium) in shallow, localized systems is currently being 
explored; the method might be applicable in holding ponds prior to SWRO intake. With this 
method, manual mixing of bottom sediments buries cysts uniformly throughout the disturbed 
layer, greatly reducing the number of cysts in the oxygenated surface layer, and thus the 
potential inoculum for future HABs (D. Anderson, unpubl. data). Another unique approach 
has been proposed, a ‘sediment-lift’ process (Imai et al. 2015) whereby bottom sediments 
rich in diatom spores are pumped into nutrient-rich, mixed surface waters (Saiki Bay, Japan). 
Dispersal of these resting stages in surface water may facilitate diatom growth rather than 
growth of slower-growing dinoflagellates, preventing HAB impacts on local mariculture 
operations. For constrained coastal bays with documented recurrent dinoflagellate blooms, 
this approach might be feasible or at least explored in pilot studies. The risk to desalination 

 
Figure 7.1. SolarBee water circulator, drawing water from depth and  
circulating water horizontally near-surface by rotating paddles. Figure: 
Medora, Co. 
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plants from such a strategy would be that the bloom that is facilitated or encouraged might 
still be deleterious to operations if it reaches cell densities that can cause fouling.  

7.3    BLOOM CONTROL 
7.3.1   Barley straw 

In lakes and ponds, deployment of barley straw (Figure 7.2) or dispersal of its extract can be 
cost-effective alternatives to controlling 
some HABs (Sellner et al. 2013; see also 
references in Brownlee et al. 2003). It was 
suggested that phenolic compounds in 
barley straw (recently identified as 
flavonoids, Xiao et al. 2013; Huang et al. 
2015) are the main inhibitor of growth of 
new dinoflagellate cells (i.e., algistatic) 
(Terlizzi et al. 2002). Iredale et al. (2012) 
showed that microbial degradation of the 
barley straw releases hydrogen peroxide as 
well as inhibitory products from the lignin; 
mechanical shearing is a possible solution 
for accelerating this process if using fresh 
rather than rotting barley straw. Note, 
however, that decomposition of the barley 
straw is light-dependent, and 
decomposition products must accumulate 
for maximum effect; hence, barley straw 
efficacy requires long residence times for 
straw breakdown, presumably not feasible 
for high-volume SWRO intake systems. 
Additionally and unfortunately, barley 
straw may have limited use in coastal 
marine environments where only a few 
dinoflagellate species (Terlizzi et al. 2002; 
Brownlee et al. 2003; Hagström et al. 
2010) and halotolerant Microcystis 
aeruginosa (K. Sellner, unpubl. data) 
appear susceptible. The growth of some 
dinoflagellate species may even be 
stimulated by barley straw extract (Terlizzi 
et al. 2002). That said, the heightened 
specificity of the approach is appealing if 
trying to avoid widespread ecological 
consequences (Ferrier et al. 2005) and may 
prove cost-effective in closed systems.  

7.3.2 Flocculation 
Clay minerals such as kaolinite and loess 
compounds have been used effectively to 
control HABs in Asia, Europe, and the 
USA, and may be a viable solution for 
suppressing blooms on fairly large scales in 

 
Figure 7.2. Barley straw bales distributed across 
shoreline of drained Williston Lake, MD, USA. On 
refilling the lake, the bales would be in the littoral zone 
for slow decomposition and release of Microcystis-
inhibiting compounds. Photo: K. Sellner. 

 
Figure 7.3. Schematic diagram showing how dispersal 
of a clay slurry can lead to particle flocculation in 
seawater, and scavenging and sedimentation of HAB 
cells. Figure: D.M. Anderson. 
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the waters upstream or downstream of intakes. Liquid suspensions of the clay are sprayed 
onto the surface layer of a bloom, resulting in scavenging and flocculation of algal cells 

(Figures 7.3, 7.4), with 80 - 95% removal 
efficiency of biomass from surface waters 
in some cases (Sengco and Anderson 2004). 
Phoslock®(lanthanum-modified bentonite) 
and chitosan have both been applied to 
cyanobacterial and Prymnesium blooms. In 
the case of Phoslock®, which caps bottom 
sediments and reduces phosphorous inputs 
and concentrations and thus induces 
phosphorous limitation in HAB species, pH, 
growth phase, colony size, surface charge, 
and chitosan quality also influence the 
results (Sellner et al. 2013; Li et al. 2015). 
Increased ammonium regeneration is one 
possible negative outcome (Sellner et al. 
2013), as this could further promote 

cyanobacteria that respond to both P and N inputs (Paerl et al. 2011).  
A concern about the use of chitosan is that bloom removal is often successful only at very 
high clay and chitosan levels; Sellner et al. (2013) noted that concentrations of both materials 
used in field intervention had to be 3-50x the levels suggested by Zou et al. (2006). Another 
HAB former, Prymnesium, has been an expanding problem for fish aquaculture in Tasmania. 
Body (2011) described successful removal of the flagellate cells from fish ponds using clays, 
and current research (Seger et al. 2014) is focused on determining the most effective clays for 
toxin removal. ‘Ball’ clay (20-80% kaolinite, 10- 25% mica and 6-65% quartz) has also 
proved effective in severely reducing blooms of Pyrodinium bahamense var. compressum 
and Gymnodinium catenatum, both marine dinoflagellates posing problems in Philippine 
coastal waters. Removal efficiencies exceeded 90% (Padilla et al.  2007; Rivera 2015). A 
number of other flocculants have been explored, including the wastewater treatment plant 
flocculant poly-aluminum chloride (PAC, Sengco et al. 2001; Ghafari et al. 2009; Lu et al. 
2015). In the latter study, Lu et al. (2015) found PAC-clay was effective in removing 90% of 
a cultured Alexandrium tamarense population,	
   43–60% of total phosphorus and 17–30% of 
total nitrogen, as well as most of the saxitoxins produced by the dinoflagellate.	
   Extracts of 
many angiosperm leaves and fruits (e.g., Li and Pan 2013; Wang et al. 2013; Tian et al. 2014) 
have also been proposed as local, natural control agents in flocculation, with limited routine 
use due to impracticalities of mass extraction, distribution, and application. It should be noted 
that clay application can pose serious threats to benthic fauna, for example, molluscan 
clearance rates (Frank et al. 2000; Shumway et al. 2003; Seo et al. 2008), juvenile clam 
growth rates (Archambault et al. 2004), and burial of resident populations. Cranford and 
Gordon (1992 in Hagström et al. 2010) reported “…extensive mortalities and/or significant 
impact on somatic and reproductive tissue growth…” in Placopecten magellanicus when 
exposed to 0.002-0.01 g bentonite L-1. Cuker (1993) reported altered pelagic food webs via 
reduced visual predation of fish feeding on Chaoborus larvae in montmorillonite-treated 
limnocorrals, leading to elevated midge larvae grazing on crustacean zooplankton. Rensel 
and Anderson (2004) noted that a clay slurry of 200 g m-2 induced short-term coughing in 
penned Atlantic salmon (Salmo salar). Further, acidified chitosan, one of the flocculants 
noted above, has been shown to kill rainbow trout at concentration >0.038 ppm (Bullock et al. 
2000). Bottom currents and depths and flushing rates in systems considering clay application 

 
Figure 7.4. Clay dispersal for HAB control in Korea. 
Photo: D.M. Anderson. 
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should be known and considered in selection of this option for open systems upstream of 
SWRO intakes. 

7.3.3   Miscellaneous 
Ozonation, electrolysis, and ultrasound-induced cavitation have been proposed as a 
mitigation option for small systems. All three generate free radicals, reducing harmful algae 
and some toxins (e.g., Lürling et al. 2016). Several marine HA taxa have been lysed with 
ozone (0.25-1 g O3 m-3) including K. brevis, Prorocentrum triestinum, Scrippsiella 
trochoidea, Karenia digitale, and Amphidinium sp. (Schneider et al. 2003; Ho and Wong 
2004; Oemcke et al. 2005). Brevetoxin was significantly reduced, but not eliminated, at 135 
mg ozone L-1, a substantially higher oxidant level than would be found in commercial 
ozonation (Schneider et al. 2003). Electrolysis of seawater yields hypochlorite, effective in 
killing several dinoflagellates (see below and Jeong et al. 2002) and is used with clays to 
flocculate C. polykrikoides in Korean waters (see Park et al. 2013).  
Ultrasound, through the sonication of algal biomass, can kill cells, but this can release 
dissolved organics, which can then be removed with addition of flocculant (e.g., Hakata et al. 
2011). Ultrasound may be quite effective at controlling bloom growth (93.5% of M. 
aeruginosa, Zhang et al. 2009) and removing toxins. Song et al. (2005) and Wu et al. (2011) 
noted microcystin degradation, most effective at frequencies ~20kHz. In closed water 
treatment plants such as SWRO plants, ultrasound might be an environmentally friendly 
alternative to chemical control methods (Wu et al. 2011), but studies are needed to follow the 
fate of toxins and released organic matter. 
7.3.4   Chemical additions 

7.3.4.1  Copper sulfate 
McKnight et al. (1983) once called copper sulfate the “algicide of choice” for HABs in lakes 
and reservoirs in the USA. This is because copper sulfate takes advantage of the natural 
toxicity of cupric ions to phytoplankton (McKnight et al. 1983) and has been successful in 
mitigating HABs in closed freshwater systems (recreational fountains, pools, ponds). 
Cyanobacteria are particularly susceptible due to the inhibition of N2-fixation by CuSO4, 
making it most effective in freshwater systems (Elder and Horne 1978). Copper sulfate with 
chlorination is still used routinely to rid drinking water reservoirs of nuisance algae and 
toxins (Zamyadi et al. 2012). In one case, it was added to a coastal marine system using crop-
dusting aircraft to combat Karenia brevis blooms in the 1950s (Rounsefell and Evans 1958). 
It was also dispersed in brackish hybrid striped bass ponds resulting in fish kills and toxin in 
pond waters; these negative effects were remedied by the subsequent addition of KMnO4 (see 
below, Deeds et al. 2004). It is the collateral damage due to the non-specific toxicity of 
copper to many marine organisms that poses severe constraints on its use in the open 
environment.  
7.3.4.2  Hydrogen peroxide 

Additions of peroxide are also effective against several cyanobacteria (Lusty and Gobler 
2017), M. aeruginosa (Lürling et al. 2014), and Planktothrix rubescens (Mattheiss et al. 
2017) and P. agardhii (Matthijs et al. 2012) in lakes and small basins. Successful suppression 
of an Alexandrium ostenfeldii bloom in a brackish water creek in The Netherlands (Burson et 
al. 2014) as well as a microcosm “brown tide” of Aureococcus anophageferrens (Randhawa 
et al. 2012) have also been noted. Importantly, peroxide additions do not seem to harm 
macrofauna, and levels under 2.5 mg L-1 appear safe for herbivorous zooplankton resulting in 
a final lake-wide application of 2 mg L-1 (Matthijs et al. 2012). Since eukaryotic 
phytoplankton are not significantly affected by dilute peroxide, it is unclear how successful 
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this approach would be in coastal applications where the dominant HAB species are not 
cyanobacteria. Higher concentrations would be harmful to all marine life, and as a result, 
peroxide treatment is limited due to cost and hazardous chemical permitting (particularly in 
the USA).  

7.3.4.3  Sulfuric acid 
Acid rain, volcanic activity, and mining are known sources of sulfuric acid to aquatic systems 
and have been shown to be detrimental to phytoplankton populations via overall acidification 
of surface waters (Geller et al. 1998). Enclosure experiments with toxic Prymnesium parvum 
demonstrated the inhibitory effect of lowered pH on bloom development and toxin 
(prymnesins) production after the addition of 0.1 N sulfuric acid (Prosser et al. 2012). Place 
(A. Place, unpubl. data) has examined the effects of sulfuric acid additions to reduce pH of 
surface waters surrounding local HABs temporarily, thereby increasing phytoplankton 
susceptibility to flocculation and settling to the bottom.  
7.3.4.4  Potassium permanganate 

Potassium permanganate has been employed in wastewater treatment plants for decades as a 
potent oxidizing agent to reduce biological and chemical oxygen demands in effluents 
(reviewed by Scott and Ollis 1995). Use in the natural environment is a concern due to its 
generic ability to oxidize all organic matter, i.e., HAB cells and all other biota. It has, 
however, been used to control Karlodinium veneficum (an ichthyotoxin-producing 
dinoflagellate) and its toxin in brackish hybrid striped bass ponds in Eastern Maryland, USA 
(Deeds et al. 2004). In another spring-fed pond, near-bottom cold water anatoxin-producing 
Planktothrix prolifera populations were effectively removed or severely reduced with bottom 
water KMnO4 additions, thereby freeing the pond of detectable toxin, with only low cell 
abundances (K. Sellner, unpubl. data) and no apparent impact on metazoans in the system. 
The P. prolifera population has since been found at bloom levels under ice seven years post-
treatment. 

7.3.4.5  Chlorination 
Chlorination, through addition of NaOCl or other chloride compounds, is commonly used to 
remove cyanobacteria and cyanotoxins from drinking water supplies, with the degree of toxin 
degradation being toxin-specific (Zamyadi et al. 2012).  Following experimental work with 
electrolysis of seawater (yielding hypochlorite) and several marine dinoflagellates 
(Gymnodinium catenatum, Cochlodinium polykrikoides, Akashiwo sanguinea, Lingulodinium 
polyedrum, Prorocentrum micans, Alexandrium affine, and Gymnodinium impudicum), Jeong 
et al. (2002) suggested effective NaOCl doses of 300-500 ppb for 10 min or 200-400 ppb for 
1 h could minimize HAB exposures; however, free radicals may stress other biota in the 
system (Brungs 1973). Chlorination to eliminate HAB toxins is discussed in Chapter 2. 

7.3.5   Biological additions 
7.3.5.1  Microbes  

Viral and bacterially induced lysis (cell breakdown) are natural processes that regulate 
phytoplankton communities and carbon flux (e.g., Fuhrman and Azam 1980; Salomon and 
Imai 2006). Making use of this natural pathogenicity seems like a logical, cost-effective 
solution to HAB control; however, the scientific community is skeptical of experiments that 
introduce foreign, potentially invasive species, or have the potential to restructure natural 
assemblages in an ecosystem irreversibly (Sanders et al. 2003; Secord 2003). Despite the 
many laboratory studies demonstrating the harmful effects of heterotrophic bacteria on algal 
species, Mayali and Azam (2004) argue that most field studies have failed to show 



Bloom prevention and control 
 

 
 

213 

conclusively the causal relationship between the decline of a bloom in natural ecosystems 
and the behavior of an introduced algicidal bacterium. Another major issue is that the 
conversion from laboratory conditions to the natural environment is inherently complex 
given the flexibility of predator-prey dynamics mediated by the presence or absence of other 
algal species (Mayali and Azam 2004). 
There are at least two studies indicating the benefit of natural plant-associated bacteria in 
reducing HABs. Imai et al. (2012) and Onishi et al. (2014; Figure 1.6) noted lytic bacteria for 
M. aeruginosa as well as H. akashiwo and Alexandrium tamarense in submersed 
angiosperms and macroalgae, respectively, indicating potential natural control in several 
Japanese bays (see Imai et al. 2014) and Puget Sound (Inaba et al. 2015).  

HAB parasites are increasingly studied as bloom control agents, with Amoebophyra spp. the 
most well-documented natural dinoflagellate control. The seminal work by Coats and 
colleagues (e.g., Coats 1999) has stimulated other research, resulting in the identification of 
several taxon-specific parasites that some suggest could be applied routinely to nearshore 
zones where host dinoflagellates might be increasing, detected through satellite or other 
remote detection systems (see Chapter 4). Jeong et al. (2003) have proposed using 
heterotrophic dinoflagellates for control of natural HABs. Routine use of most biological 
agents seems impractical at this time due to the costs associated with maintenance of the 
parasite in culture, mass cultivation, manpower, and the diversity of HABs that could 
frequent an area. 

Although not identified for marine species, chytrid fungi have been shown to infect a wide 
variety of phytoplankton in freshwater lakes, and while not necessarily host-specific, they 
appear to prefer larger phytoplankton species (Kagami et al. 2007). These eukaryotic 
parasites are ubiquitous in coastal marshes, and so far, only two genera of infecting fungi 
have been studied for marine taxa (diatoms only), with little known regarding the magnitude 
of their pathogenicity (Park et al. 2004). Interestingly, the major eukaryotic parasites 
infecting marine dinoflagellates are other dinoflagellates (rather than fungi), such as 
Amoebophyra spp. mentioned above. Jia et al. (2010) examined the effect of “white rot 
fungus” (Trichaptum abietinum), a non-aquatic, wood-decay fungus often used to degrade 
industrial pollutants, on several cyanobacterial cultures. Not only were the cultures destroyed 
within 48 h, but it appeared that the fungus actively preyed on the algal cells and did not 
seem to discriminate between species. Even more tantalizing is the complete degradation 
after 12 h of microcystin in test M. aeruginosa cultures inoculated with mycelial pellicles. It 
is important to note that white rot fungus has not been applied to larger reservoirs or drinking 
water systems nor evaluated for environmental safety (Jia et al. 2012), although it has been 
used to increase barley straw decomposition and inhibition of the cyanobacterium (Sellner et 
al. 2015).  
7.3.5.2  Competitors 

Biological diversity may also be an important factor for keeping HAB species from gaining 
dominance. Cardinale (2011) demonstrated that more diverse communities are naturally 
buffered against nutrient enrichment relative to less diverse communities due to the enhanced 
niche partitioning by benthic diatoms which increased nitrogen uptake. The promotion of 
higher algal biodiversity and habitat preservation may thus be one method for facilitating 
greater nutrient uptake capacity, particularly in protected environments where physical 
advection processes do not dominate phytoplankton turnover rates. Allelopathic interactions 
(e.g., Pratt 1966; Tang and Gobler 2011; Lim et al. 2014; Tang et al. 2014) introduced when 
algae exude dissolved secondary metabolites (sometimes phycotoxins) into the environment 
are an indicator of inter-specific competition for limiting resources (Graneli and Hansen 
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2006). It may also be that as species diversity increases, the ability of a given toxic species to 
dominate its competitors is suppressed by the wider array of competitive strategies present in 
the community. As marine ecosystem models become more sophisticated and include 
realistic phytoplankton biodiversity (Follows et al. 2007; Goebel et al. 2010), varying 
management strategies can be assessed in relation to the physical environment, community 
composition, competitive interactions, and nutrient dynamics. 

7.3.5.3  Grazers and trophic cascades 
Algal proliferation is heavily regulated by grazing pressure from zooplankton, with grazing 
and trophic cascades representing an often overlooked component of bloom development and 
persistence (e.g., Verity and Smetacek 1996; Gobler et al. 2002; Turner and Graneli 2006; 
Smayda 2008). There is evidence that eutrophication (i.e., nutrient enrichment) exerts an 
indirect effect on zooplankton grazing efficiency. At higher nutrient levels, phytoplankton are 
no longer suppressed by grazers (Kemp et al. 2001) and actually increase the production of 
grazing deterrents (Mitra and Flynn 2006), a positive feedback that intensifies negative 
impacts of HABs (Sunda et al. 2006). This idea of indirect effects is also consistent with a 
simulation study by Daskalov (2002) who found that the increase in algal blooms in the 
Black Sea was the result of intense overfishing of top predators, such as cetaceans and large 
migratory fish. The overfishing resulted in decreased predator control of planktivorous fish, 
thereby depleting zooplankton stocks and allowing phytoplankton to flourish. This ‘trophic 
cascade’ was assisted by anthropogenic eutrophication that significantly relieved resource 
limitation from the bottom-up (Daskalov 2002) and likely further suppressed grazing. 
Another simulation study (Walsh et al. 2011) used a coupled physical-biological model of the 
Chukchi/Beaufort Seas to illustrate that “fishing down of the food web” (sensu Pauly et al. 
1998) and increased eutrophication in a scenario similar to that of the Black Sea supports 
hypotheses of a regime shift favoring N2-fixers and HAB-forming dinoflagellates like the 
saxitoxin-producing Alexandrium tamarense. Ultimately, the solution to this ecologically 
complex interplay is similar to that discussed in Section 7.2.1, whereby reduction in nutrient 
loads not only provides bottom-up regulation of blooms, but can lead to unexpected 
consequences for other ecosystem components essential to bloom control.  
7.3.6   Combined methods/redundancy 

There are some examples of combinations of multiple interventions in bloom control. Sellner 
et al. (2015) document the combined effects of hydraulic flushing and barley straw additions 
in limiting growth of M. aeruginosa and toxin accumulation in a freshwater lake in 
Maryland, USA. Flocculation, sedimentation, capping of bottom sediments, and additions of 
toxin-utilizing Pseudomonas sp. in bloom control have been suggested for blooms of M. 
aeruginosa in China (Li et al. 2015). As noted above, seawater electrolysis followed by clay 
flocculation is an effective removal strategy for C. polykrikoides populations that threaten 
fish pen mariculture in Korean (Park et al. 2013). Practical use of approaches like these near 
SWRO intakes remains to be determined.  
7.4   SUMMARY 

There are numerous techniques to prevent and control HABs, though many remain 
experimental or are practical only on a small scale. Most preventative measures involve 
factors beyond the control of desalination plant operators, such as nutrient reduction from 
regional watersheds or other point and non-point sources of nutrient discharge to the coastal 
zone that can stimulate HABs. The increasing development of desalination plants should 
serve to provide pressure on governmental entities (or favor government-private partnerships) 
responsible for monitoring and controlling nutrient pollution given the need for safe, clean 
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drinking water. As covered in Chapter 3, monitoring methods that include satellite-based 
bloom detection, and advanced models of HAB initiation and transport provide early warning 
of delivery of potential toxins or bloom biomass to a plant’s intake system. While these 
monitoring and modeling programs require significant financial investment to develop and 
maintain, they allow operators to prepare for HAB events and potentially adjust intake 
operations and plant pre-treatment technologies accordingly.  

Fortunately, options remain for the control of HABs that have already entered a desalination 
plant, and these are described in detail in Chapter 9. For plants with holding ponds or 
reservoirs, intervening with physical disturbance techniques, oxidizing compounds (H2O2, 
KMnO4) or clay minerals to remove HAB particles via flocculation are possibilities. Care 
must be taken, however, as some turn particulate algal biomass (which is relatively easy to 
remove with pretreatment) into dissolved organic compounds, which are much harder to 
remove. Other post-intake technologies for SWRO include the application of copper sulfate 
(cell lysis but little toxin degradation) followed by, or by themselves, the use of techniques 
that generate oxidizing conditions (again peroxide or permanganate as well as chlorination, 
electrolysis, ozonation, perhaps ultrasound), but post-treatment of these waters might be 
required to mitigate possible damage to plant membranes.  
High costs will likely prohibit the frequent use of these methods for mitigation, but several 
could also be considered as options for minimizing HAB entry into a desalination plant, 
particularly in the case of methods that are applicable to coastal environments or embayments, 
such as hydrogen peroxide application or electrolysis-clay addition. The majority of methods 
suggested in this chapter, however, are meant to give desalination operators an understanding 
of the challenges associated with HAB prevention and control. Many are not practical, given 
desalination–specific factors such as the high-volume intake requirements of plants, but 
others may be of use, and may contribute to a suite of adaptive strategies to mitigate HAB 
impacts on desalination operations.  
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