dc.contributor.author | Arellano-Verdejo, J. | |
dc.contributor.author | Lazcano-Hernandez, H.E. | |
dc.contributor.author | Cabanillas-Terán, N. | |
dc.coverage.spatial | Caribbean Sea | en_US |
dc.coverage.spatial | Mexico | en_US |
dc.date.accessioned | 2020-04-25T15:36:05Z | |
dc.date.available | 2020-04-25T15:36:05Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Arellano-Verdejo, J,; Lazcano-Hernandez, H.E. and Cabanillas-Terán, N. (2019) ERISNet: deep neural network for Sargassum detection along the coastline of the Mexican Caribbean. PeerJ, 7:e6842 DOI: http://doi.org/10.7717/peerj.6842 | en_US |
dc.identifier.uri | http://hdl.handle.net/11329/1300 | |
dc.identifier.uri | http://dx.doi.org/10.25607/OBP-808 | |
dc.description.abstract | Recently, Caribbean coasts have experienced atypical massive arrivals of pelagic
Sargassum with negative consequences both ecologically and economically. Based
on deep learning techniques, this study proposes a novel algorithm for floating
and accumulated pelagic Sargassum detection along the coastline of Quintana Roo,
Mexico. Using convolutional and recurrent neural networks architectures, a deep neural
network (named ERISNet) was designed specifically to detect these macroalgae along
the coastline through remote sensing support. A new dataset which includes pixel values
with and without Sargassum was built to train and test ERISNet. Aqua-MODIS imagery
was used to build the dataset. After the learning process, the designed algorithm achieves
a 90% of probability in its classification skills. ERISNet provides a novel insight to detect
accurately algal blooms arrivals. | en_US |
dc.language.iso | en | en_US |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.other | Remote sensing | en_US |
dc.subject.other | Satellite sensing | en_US |
dc.subject.other | Neural networks | en_US |
dc.subject.other | Algal blooms | en_US |
dc.subject.other | Sargassum | en_US |
dc.subject.other | Seaweed | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Macroalgae | en_US |
dc.subject.other | Management | |
dc.subject.other | Management | |
dc.title | ERISNet: deep neural network for Sargassum detection along the coastline of the Mexican Caribbean. | en_US |
dc.type | Journal Contribution | en_US |
dc.description.refereed | Refereed | en_US |
dc.format.pagerange | 19pp. | en_US |
dc.identifier.doi | http://doi.org/10.7717/peerj.6842 | |
dc.subject.parameterDiscipline | Parameter Discipline::Biological oceanography::Macroalgae and seagrass | en_US |
dc.subject.instrumentType | MODIS | en_US |
dc.bibliographicCitation.title | PeerJ | en_US |
dc.bibliographicCitation.volume | 7 | en_US |
dc.bibliographicCitation.issue | Article e6842 | en_US |
dc.description.sdg | 14.2 | en_US |
dc.description.eov | Macroalgal canopy cover and composition | en_US |
dc.description.maturitylevel | TRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space) | en_US |
dc.description.bptype | Best Practice | en_US |
dc.description.bptype | Manual (incl. handbook, guide, cookbook etc) | en_US |
obps.contact.contactname | Javier Arellano-Verdejo | |
obps.contact.contactemail | javier.arellano@mail.ecosur.mx | |
obps.resourceurl.publisher | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500371/pdf/peerj-07-6842.pdf | en_US |