Show simple item record

dc.contributor.authorBresnahan Jr., Philip J.
dc.contributor.authorMartz, Todd R.
dc.contributor.authorTakeshita, Yuichiroa
dc.contributor.authorJohnson, Kenneth S
dc.date.accessioned2018-06-22T21:55:43Z
dc.date.available2018-06-22T21:55:43Z
dc.date.issued2014
dc.identifier.citationBresnahan Jr., P.J.; Martza,T. R.; Takeshita, Y.; Johnson, K.S. and La Shomba, M. (2014) Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods in Oceanography, 9, pp.44-60. DOI: http://dx.doi.org/10.1016/j.mio.2014.08.003en_US
dc.identifier.urihttp://hdl.handle.net/11329/432
dc.identifier.urihttp://dx.doi.org/10.25607/OBP-18
dc.description.abstractPerformance of autonomous pH sensors is evaluated by comparing in situ data to independent bench-top measurements of pH and to co-located pH, O2, and pCO2 sensors. While the best practice is always to deploy a properly calibrated sensor, the lengthy time period required for sensor conditioning and calibration often results in sensor deployment without comprehensive calibration. Quality control (QC) procedures are examined to determine the errors associated with different in situ calibration approaches and lay a framework for best practices. Sensor packages employing the Honeywell Durafet remained stable across multiple deployments for over nine months. However, sensor performance was often limited by biofouling. Regional empirical relationships for estimating carbonate system parameters are shown to enable identification of otherwise indistinguishable sensor offset and drift when multiple sensor types are co-located. Uncertainty is determined by calibration approach and must be quantified on a case-by-case basis. Our results indicate that the Durafet is capable of accuracy, relative to a chosen reference, of better than 0.03 pH units over multiple months. Accuracy is improved when a robust shore-side calibration is performed, an independent means of QC is available throughout a deployment, and effective biofouling prevention measures are taken.en_US
dc.language.isoenen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 IGO*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/igo/*
dc.subject.otherpHen_US
dc.subject.otherOcean acidificationen_US
dc.subject.otherISFETen_US
dc.subject.otherAutonomous sensorsen_US
dc.subject.otherCalibrationen_US
dc.titleBest practices for autonomous measurement of seawater pH with the Honeywell Durafet.en_US
dc.typeJournal Contributionen_US
dc.description.refereedRefereeden_US
dc.format.pagerangepp.44-60en_US
dc.identifier.doihttp://dx.doi.org/10.1016/j.mio.2014.08.003
dc.subject.parameterDisciplineParameter Discipline::Chemical oceanographyen_US
dc.subject.instrumentTypeInstrument Type Vocabulary::pH sensorsen_US
dc.bibliographicCitation.titleMethods in Oceanographyen_US
dc.bibliographicCitation.volume9en_US
dc.description.maturitylevelTRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space)en_US
dc.description.bptypeBest Practiceen_US
dc.description.bptypeGuideen_US
obps.contact.contactemailtrmartz@ucsd.edu
obps.resourceurl.publisherhttp://cce.lternet.edu/docs/bibliography/Public/0309ccelter.pdfen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 IGO
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 IGO